期刊文献+

一种基于支持向量机的模糊分类器 被引量:8

Fuzzy Classifier Based on Support Vector Machine
下载PDF
导出
摘要 提出了一种基于支持向量机学习的模糊分类器(FCBSVM)。介绍了FCBSVM的基本思想及其结构,分析了隶属函数参数和惩罚参数C对分类规则的产生以及分类性能的影响,并提出了参数确定方法。构建这种分类器时,先选用适当的隶属函数,构造核函数。然后,以训练模式作为中心,进行模糊划分,对每个模糊划分建立一条模糊IF-THEN分类规则。最后,利用支持向量机学习方法,求出支持向量和规则的参数。这种分类器将支持向量机和模糊集合理论的优点结合起来,实现了模糊划分和模糊分类规则的自动产生。用双螺旋线数据和典型的数据集对分类器的性能进行了实验评测,验证了分类器的有效性。 A fuzzy classifier based on Support Vector Machine (FCBSVM) was proposed. The basic idea and the structure of this classifier were introduced. The effects of the membership functions parameters and the penalty parameters for the classification rule and the classifier performance were analyzed. The method of selecting rules was described. For the process of the proposed classifier constructed, firstly the kernel function was constructed by selecting suitable membership function, then a fuzzy partition was built around each training pattern and a fuzzy IF-THEN classification rule was defined for each fuzzy partition, finally the support vectors and the parameters for rules were got by SVM learning method. Since this classifier has the virtues of fuzzy set and Support Vector Machine, the fuz~ partition and the classification rules can be produced automatically. Experiments with two-spiral data and typical data sets evaluate the performances of the proposed classifier.
出处 《系统仿真学报》 CAS CSCD 北大核心 2008年第13期3414-3419,共6页 Journal of System Simulation
基金 国家自然科学基金项目(60673191) 广东省自然科学基金项目(7300450) 中国博士后基金项目(20070410299)
关键词 模糊分类器 模糊规则 隶属函数 支持向量机 fuzzy classifier fuzzy rule membership function support vector machine
  • 相关文献

参考文献14

  • 1Kuncheva L I. How Good Are Fuzzy If-Then Classifiers? [J] IEEE Transactions on Systems, Man, and Cybernetics (S1083-4419), 2000, 30(4): 561-509.
  • 2V Vapnik. Statistical l_earning Theory [M]. New York: John Wiley & Sons Inc., 1998: 116-200.
  • 3D Nauck, R Kruse. A Neuro-Fuzzy Method to Learn Fuzzy Classification Rules from Data [J].Fuzzy Sets and Systems (S0165-0114), 1997, 89(3): 277-288.
  • 4Shinn-Ying Ho, Chia-Cheng Liu, Soundy Liu. Design of an Optimal Nearest Neighbor Classifier Using an Intelligent Genetic Algorithm [J]. Pattern Recognition Letters (S0167-8655), 2002, 23(13): 1495-1503.
  • 5M Ryoke, H Taraara, Y Nakaraori. Fuzzy Rule Generation by Hyperellipsoidal Clustering [C]// Methodologies for the Conception, Design and Application of intelligent System. New Jersey: World Scientific, 1996: 86-89.
  • 6L Junco, L Sanchez. Using the Adaboost Algorithm to Induce Fuzzy Rules in Classification Problems [C]//Proc. Spanish Conference for Fuzzy Logic and Technologies. Sevilla: J. Vascak, 2000: 297-301.
  • 7H-M Lee, C-M Chen, J-M Chen, Y-L Jou. An Efficient Fuzzy Classifier with Feature Selection Based on Fuzzy Entropy [J]. IEEE Trans. Syst., MAN, Cybem. B (S1083-4419), 2001, 31(3): 426-432.
  • 8J Yen. Fuzzy Logic-a Modem Perspective [J]. IEEE Trans. Knowledge and Data Engineering (S1041-4347), 1999, 11(1): 153-165.
  • 9Singh S. Neural Learning of Spiral Structures [C]//Proe. International Conference on Advances in Pattern Recognition (ICAPR98). Plymouth: S Singh, 1998: 226-231.
  • 10Blake C L, Merz C J. UCI Repository of Machine Learning Databases [EB/OL]. (2006-3) [2007-4]. http;//archive.ics.uci.edu/ml/, 2007.

二级参考文献13

  • 1张英,苏宏业,褚健.基于模糊最小二乘支持向量机的软测量建模[J].控制与决策,2005,20(6):621-624. 被引量:27
  • 2Vapnik V. The Nature of Statistical Learning Theory [M]. New York: Springer Verlag, 1995.
  • 3Sanchez A V D. Advanced Support Vector Machines and Kernel Methods [J]. Neurocomputing (S0925-2312), 2003, 55(1-2): 5-20.
  • 4Suykens J A K, Vanderwalle J. Least Squares Support Vector Machine Classifiers [J]. Neural Processing Letters (S1370-4621), 1998, 9(3): 293-300.
  • 5Saunders C, Gammerman A, Vovk V. Ridge Regression Learning Algorithm in Dual Variables [C]// Proceedings of the Fifteenth International Conference on Machine Learning (ISBN: 1-55860-556-8), 1998. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc, 1998: 515-521.
  • 6Lin Chunfu, Wang Shengde. Training Algorithm for Fuzzy Support Vector Machines with Noisy Data [J]. Pattern Recognition Letters (S0167-8655), 2004, 25(14): 1647-1656.
  • 7Wold S, Kettaneh Wold N, Skagerberg B, Nonlinear PLS modeling lpartial least squares projection to latent structures [J]. Chemometrics and Intelligent Laboratory Systems (S0169-7439), 1989, 7(1-2): 53-65.
  • 8Chapelle O, Vapnik V, Bousquet O, S Mukherjee. Choosing Multiple Parameters for Support Vector Machines [J]. Machine Learning (S0885-6125), 2002, 46(1-3): 131-159.
  • 9Vladimir Cherkassky, Ma Yunqian. Practical Selection of SVM Parameters and Noise Estimation for SVM Regression [J]. Neural Networks (S0893-6080), 2004, 17(1): 113-126.
  • 10Yan Weiwu, Shao Huihe, Wang Xiaofan. Soft Sensing Based on Support Vector Machine and Bayesian Model Selection [J]. Computers and Chemical Engineering (S0098-1354), 2004, 28(8): 1489-1498.

共引文献10

同被引文献40

引证文献8

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部