期刊文献+

基于无标度网络的应用层组播仿真

Simulation of Application Layer Multicast Based on Scale-free Network
下载PDF
导出
摘要 最新的研究表明,Internet网络中节点的连接度服从幂律分布,且具有无标度(scale-free)特性。基于无标度网络模型建立的网络仿真能够更真实的反映在互联网中应用的演化特征。基于对无标度网络的研究,提出了一种基于对数关系的改进的非平稳增长模型,在此模型基础上建立了基于gossip协议的应用层组播(ALM)的模拟仿真。仿真结果表明,与常用的随机网络模型比较,提出的基于无标度网络的模型与互联网的实际情况更吻合;与Planetlab实验床试验和实际测量数据分析比较,基于无标度网络的仿真可以有效模拟大规模网络上的应用。 The latest research shows that the conjunction degree of nodes in the Internet obeys power-law distribution and has some characteristics of scale-free. The simulation based on scale-free network can reflect the evolvement of applications in the Internet more really. According to the research of scale-free network, an improved model of nonstationary growth was proposed based on logarithm relationship. On this model a simulation of ALM (application layer multicast) was built up based on the gossip protocol. The simulation result shows that comparing with the common random network model, the model put forward is more suitable with the actual circumstance of the Internet. Contrasting with the Planetlab experiment and the actual survey data, the simulation based on scale-free network can really reproduce the application of large-scale network effectively.
出处 《系统仿真学报》 CAS CSCD 北大核心 2008年第13期3574-3577,共4页 Journal of System Simulation
基金 国家自然科学基金专项基金项目(60743007) 北京市教育委员会共建项目专项资助(XK100130648)
关键词 无标度网络 非平稳增长 应用层组播 GOSSIP协议 scale-free network nonstationary growth application layer multicast gossip protocol
  • 相关文献

参考文献15

  • 1Erdos E Renyi A. On the evolution of random graphs [J]. Publication bf the Mathematical Institute of the Hungarian Academy of Sciences, 1960, 5: 17-61.
  • 2Watts D J, Strogatz S H. Collective dynamics of ‘small-world' networks [J]. Nature (S0028-0836), 1998, 393(6684): 440-442.
  • 3Faloutsos M, Faloutsos P, Faloutsos C. On power-law relationships of the Internet topology [J]. Computer Communication Review (S0146-4833), 1999, 29(4): 251-262.
  • 4Watts D J. The New science of networks [J]. Annual review of sociology (S0360-0572), 2004, 30: 243-270.
  • 5Albert R, Jeong H, Barabasi A-L. Intemet: Diameter of the WoddWide Web [J]. Nature (S0028-0836), 1999, 401(6749): 130-131.
  • 6Albert R, Barabasi A L. Statistical mechanics of complex networks [J]. Reviews of Modem Physics (S0034-6861), 2002, 74(1): 47-97.
  • 7Dorogovtsev S N, Mendes J F E Effect of the accelerating growth of communications networks on their structure [J]. Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics (S1539-3755), 2001, 63(211): 025101-1.
  • 8Dorogovtsev S N, Mendes J F F, Oliveira J G. Degree-dependent intervertex separation in complex networks [J]. Physical Review E-Statistical, Nonlinear, and Soft Matter Physics (S 1539-3755), 2006, 73(5): 056122.
  • 9Shi D, Chen Q, Liu L. Markov chain-based numerical method for degree distributions of growing networks [J]. Physical Review E-Statistical, Nonlinear, and Soft Matter Physics (S1539-3755), 2005, 71(3): 036-140.
  • 10姜誉,方滨兴,胡铭曾,何仁清.大型ISP网络拓扑多点测量及其特征分析实例[J].软件学报,2005,16(5):846-856. 被引量:38

二级参考文献42

  • 1姜誉,方滨兴,胡铭曾.多点测量Internet路由器级拓扑[J].电信科学,2004,20(9):12-17. 被引量:3
  • 2Floyd S, Kohler E. Internet research needs better models. ACM SIGCOMM Computer Communication Review, 2003,33(1)29-34.
  • 3Jiang Y, Fang BX, Hu MZ, Zhang HL, Yun XC. A distributed architecture for Internet router level topology discovering systems.In: Fan PZ, Shen H, eds. Proc. of the 4th Int'l Conf. on Parallel and Distributed Computing, Applications and Technologies(PDCAT'2003). New York: IEEE Press, 2003.47-51.
  • 4Faloutsos M, Faloutsos P, Faloutsos C. On power-law relationships of the Internet topology. ACM SIGCOMM Computer Communication Review, 1999,29(4):251-262.
  • 5Mitzenmacher M. A brief history of generative models for power law and lognormal distributions. Internet Mathematics, 2003,1(2):226-251.
  • 6Chen Q, Chang H, Govindan R, Jamin S, Shenker S J, Willinger W. The origin of power laws in Internet topologies revisited. In:Proc. of the IEEE INFOCOM 2002. New York: IEEE Press, 2002. 608-617.
  • 7Farkas IJ, Derenyi I, Barabasi A, Vicsek T. Spectra of 'real-world' graphs: Beyond the semicircle law. Physical Review E, 2001,64(2):1-12.
  • 8Albert R, Barabasi A. Statistical mechanics of complex networks. Reviews of Modern Physics, 2002,74(1):47-97.
  • 9Dam E, Haemers WH. Which graphs are determined by their spectrum? Linear Algebra and its Applications, 2003,373:241-272.
  • 10Magoni D, Pansiot J-J. Analysis of the autonomous system network topology. ACM Computer Communication Review, 2001,31(3):26-37.

共引文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部