期刊文献+

一种多尺度圆形滤波器在肺结节增强中的应用 被引量:4

Algorithm for Circle Filter Based Anisotropy Smoothing Equations Application for Enhancement of Pulmonary Nodules
下载PDF
导出
摘要 肺部CT图像的结节检测由于受到噪声和肺部区域中气管、血管的干扰,一直是医学辅助诊断领域中的一个难点。针对这一问题,提出了一种基于多尺度的各向异性平滑方程的圆形滤波器方法。该方法首先利用各向异性平滑方程与高斯圆模型的Hessian矩阵推导出多尺度的圆形平滑方程,利用该方程对结节图像进行多尺度平滑;然后分析了高斯圆模型Hessian矩阵特征值的特点,建立了圆形增器滤波函数。最后,利用该滤波函数对多尺度平滑后的结节图像进行圆形增强滤波。实验证明该方法能够有效地抑止非圆形状的干扰,得到较好的结节增强图像,为后续的结节特征提取与分类奠定了基础。 The detection of lung nodules is a difficult problem in the field of medical aided diagnosis, due to the noise and the disturbance of blood vessels and tracheas. According to this problem, a Circle filter algorithm was brought forward based on the anisotropy smoothing equations. A circle smoothing equation was deduced by means of the anisotropy smoothing equations and Hessian matrix of the circle in the Gaussian model. By analyzing the characters of eigenvalues of the Hessian matrix, a function for the circle enhancement filtering was proposed. The circle enhancement filter was then used to enhance the nodule image, which was smoothed in different scales. The experiment result shows that this algorithm has effectively suppressed the non-circle disturbance; hence enhanced images are obtained, which will be beneficial for the feature extraction and classification of nodules.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第14期3726-3729,共4页 Journal of System Simulation
基金 国家自然科学基金(60671050)
关键词 结节检测 HESSIAN矩阵 圆形滤波 CT图像 Detection of nodules Hessian matrix circle filter CT images
  • 相关文献

参考文献11

  • 1Leef J L 3rd, Klein J S. The solitary pulmonary nodules [J]. Radiol Clin North Am. (S0938-7994), 2002, 40( 1): 123-143.
  • 2Lillington G A, Caskey C I. Evaluation and management of solitary and multiple pulmonary nodule [J]. Clin Chest Med (S0033-8389), 1993, 14(1): 111-119.
  • 3Shinji Yamamoto. Image Processing Algorithm of Computer-Aided Diagnosis in Lung Cancer Screening by CT [J]. Systems and Computers in Japan (S0882-1666), 2005, 36(7): 40-53.
  • 4Tomoko Miwa. Automatic Detection of Lung Cancers in Chest CT Images by the Variable N-Quoit Filter [J]. Systems and Computers in Japan (S0882-1666), 2002, 33(1): 53-63.
  • 5M Giger, K Doi, H MacMahon. Image feature analysis and computer-aided diagnosis in digital radiography: Automated detection of nodules in peripheral lung fields [J]. Med Phys. (S0094-2405), 1988 15(2): 158-166.
  • 6S-C Lo, M Freedman, J-S Lin, S Man. Automatic lung nodule detection using profile matching and back-propagation neural network Techniques [J]. Journal of Digital Imag (S0897-1889), 1993, 6(1): 48-54.
  • 7W Lampeter. ANDS-VI computer detection of lung nodules [C]// Proc. SPIE. USA: SPIE, 1985, 555: 253-261.
  • 8P Perona, J Malik. Scale space and edge detection using anisotropic diffusion. [C]//Proc IEEE Comp. Soc. Workshop on Computer Vision. Washington: IEEE Computer Society Press, 1987: 16-22.
  • 9A P Witkin. Scale-space filtering [C]// Proceedings of IJCAI, Karlsruhe, Germany 1983: 1019-1021.
  • 10W H Press, B P Flannery, S A Teukolsky, W T Vetterling. Numerical Recipes: The Art of Scientific Computing [R]. Cambridge, UK: Cambridge University Press, 1986: 498-546.

同被引文献20

  • 1张元智,顾立强,原林,黄文华,尹博,谢颖涛,张景僚,林晓岗.腰骶丛神经的断层解剖学及可视化初步研究[J].中华创伤骨科杂志,2004,6(12):1362-1364. 被引量:16
  • 2薛以锋,鲍旭东,马汉林,吴磊.基于CT图像的肺结节计算机辅助诊断系统[J].中国医学物理学杂志,2006,23(2):93-96. 被引量:15
  • 3Chappell K E, Robson M D, Stonebridge-Foster A, et al. Magic angle effects in MR neurography[J]. AJNR Am J Neuroradiol, 2004, 25(3): 431-440.
  • 4A P Witkin. Scale-space filtering [C]. Proceedings of IJCAI, Karlsruhe, Germany, 1983: 1019-1021.
  • 5Sahiner B, Ge Z, Chan H, et al. False-positive reduction using Hessian features in computer-aided detecion of pulmonary nodules on thoracic CT images[C]. Proceedings of SPIE on Medical Imaging: Image Processing. Denver: SPIE, 2005: 790-795.
  • 6Lin D T, Yan C R,Chen W T. Autonomous Detection ofPulmonary Nudules on CT Images with a Neural Network-based Fuzzy System [J]. Computerized Medical Imagingand Graphics. 2005 . 29 : 447 - 458.
  • 7Katsumata Y.Itai Y,MaedaS. etal. Automatic Detectionof GGO Candidate Regions Employing Four StatisticalFeatures on Thoracic MDCT Image [C]. COEX, Seoul*Korea : International Conference on Control. 2007,17-20.
  • 8Katsumata Y, Itai Y, Kim H. et al. Automatic Detectionof GGO Candidate Regions by Using Artificial NeuralNetworks from Thoracic MDCT Images [ C]. COEX.Seoul, Korea: The 3rd International Conference onInnovative Computing Information and Control, 2008,1983- 1985.
  • 9Suzuki K,SHI Zheng Hao,et al. Supervised Enhancem-ent of Lung Nodules by Use of a Massive-TrainingArtificial Neural Network (MTANN) in Computer-AidedDiagnosis (CAD) [C], Chicago: IEEE TRANSACTIONSON BIOMEDICAL, 2008,123 - 134.
  • 10陈卉,徐岩,马斌荣.针对肺结节检测的肺实质CT图像分割[J].中国医学物理学杂志,2008,25(6):883-886. 被引量:4

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部