期刊文献+

一种基于HRCT影像的肺结节计算机辅助检测方法 被引量:1

Computer-aided Detection Scheme for Lung Nodule Based on HRCT Images
下载PDF
导出
摘要 肺癌是威胁人类生命的第一杀手,如果肺癌能在早期被发现、诊断和治疗,将大大提高肺癌患者的生存率。提出了一种自动的基于高分辨率CT影像(HRCT)的肺结节计算机辅助检测(CAD)方法,可以分为肺实质分割、感兴趣区域(ROI)识别、肺结节特征提取与分类、三维可视化显示几个步骤,综合采用了自适应阈值分割、数学形态学、偏微分方程与不变矩分析等算法。通过对多组肺癌患者CT影像的测试,该方法可以帮助医生有效的提高对于肺癌疾病的诊断准确率。 Lung cancer is the most common fatal malignancy in both men and women, early detection and treatment of lung cancer can greatly improve the survival rate of patient. An automatic computer-aided detection (CAD) scheme was proposed that could identify the lung nodule at an early stage from high resolution CT images (HRCT). The work is separated to several steps: the segmentation of lung parenchyma, the detection of region of interests (ROI), the feature extraction and classification, 3D visualization, which use adaptive threshold segmentation, math morphologic, Gaussian filter, Hessian matrix and moment algorithm. Though clinical trials, the computer-aided detection scheme can help physician improve the diagnosis efficiency.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第14期3849-3852,共4页 Journal of System Simulation
基金 国家自然科学基金(60671050)
关键词 计算机辅助诊断 肺结节检测 肺实质分割 CT影像 computer-aided diagnosis lung nodule detection lung parenchyma segmentation CT image
  • 相关文献

参考文献10

  • 1Geoffrey D, Rubin John K, et al. Pulmonary nodules on multi- detector row CT scans: performance comparison of radiologists and computer-aided detection [J]. Radiology (S0033-8419), 2005, 234(1): 274-283.
  • 2聂生东,郑斌,李雯.CT图像肺结节计算机辅助检测与分类系统设计(英文)[J].系统仿真学报,2007,19(5):935-944. 被引量:14
  • 3魏颖,徐心和,贾同,赵大哲.基于优化水平集方法的CT图像肺结节检测算法[J].系统仿真学报,2006,18(z2):909-911. 被引量:7
  • 4Bram V G, Bart M H. Computer-aided diagnosis in chest radiography [J]. IEEE Transaction on Medical Imaging (S0278-0062), 2001, 20(12): 1228-1241.
  • 5Y Lee, T Hara, H Fujita, S Itoh, T Ishigaki. Automated detection of pulmonary nodules in helical CT images based on an improved template-matching technique [J]. IEEE Trans Medical Imaging (S1558-254x), 2002, 20(7): 595-604.
  • 6M Fiebich, D Wormanns, W Heindel. Improvement of method for computer-assisted detection of pulmonary nodule-s in CT of the chest [J]. Proc SPIE (S0277-786x), 2001, 4322(10): 702-709.
  • 7Mcnitt Gray M F, Sayre J W, Huang HK. Pattern classification approach to segmentation of digital chest radiographs and chest CT image slices [J]. Proc SPIE (S0277-786x), 1994, 2167(10): 465-476.
  • 8章毓晋.影像分割[M].北京:北京科学出版社,2001.
  • 9Armato S G Ⅲ, Giger M L. Automated detection of pulmonary nodules in helical computed tomography images of the thorax [J]. Proc SPIE (S0277-786x), 1998, 3338(10): 916-919.
  • 10Qiang Li. Selective enhancement filters for nodules, vessels, and airway wails in two- and three-dimensionai CT scans [J]. Med Phys (S0094-2405), 2003, 30(8): 2040-2052.

二级参考文献59

  • 1[1]Thomson Prentice.Facts and figures 2003.World Health Organization[EB/OL].(2003).http://www.who.int.
  • 2[2]T.Okumura,TMiwa,Jun-ichi Kako,et al.Automatic Detecion of Lung Cancers in Chest CT Images by Variable N-Quoit Filter[C]//Fourteenth International Conference on Patern Recognition,Brisbane,Australia,1998.
  • 3[3]R.Wiemker,A.Zwarkruis.Optimal thresholding for 3D segmentation of pulmonary nodules in high resolution CT[J].International Congress Series,Elsevier Science (S0531-5131),2001,1230:653-658.
  • 4[4]Colin C.McCulloch,et al.Model-Based Detection of Lung Nodules in Computed Tomography Exams[J].Academic Radiology(S1076-6332),2004,3:258-266.
  • 5[5]Y Lee,THara,H.Fujita,et al.Automated Detection of Pulmonary Nodules in Helical CT Images Based on an Improved Template-Matching Technique[J].IEEE transations on medical imaging (S0278-0062),2001,20(7):595-604.
  • 6[6]Hidetaka Arimura,Shigehiko Katsuragawa,et al.Computerized Scheme for Automated Detection of Lung Nodules in Low-Dose Computed Tomography Images for Lung Cancer Screening[J].Academic Radiology (S 1076-6332),2004,11 (6):617-629.
  • 7[7]S.Osher,J.A.Sethian.Fronts Propagating with Curvature Dependent Speed:Algorithms based on the Hamilton-Jacobi formulation[J].Journal of Computational Physics (S0021-9991),1988,79(1):12-49.
  • 8[8]D.Adalsteinsson,J.A.Sethian.The Fast Cconstmction of Extension Velocities in Level Set Methods[J].Journal of Computational Physics (S0021-9991),1999,148(1):2-22.
  • 9[9]Chan TF,Vase LA.Active Contours without Edges[J].IEEE Transactions on Image Processing (S1057-7149),2001,10(2):266-277.
  • 10Zhao B, Yankelevitz D, Reeves A, Henschke C. Two-dimensional multi-criterion segmentation of pulmonary nodules on helical CT images [J]. Med Phys (S0094-2405), 1999, 26(8): 889-895.

共引文献19

同被引文献5

引证文献1

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部