期刊文献+

多LFM信号自适应时频表示方法 被引量:2

Novel method for multi-LFM signals adaptive time-frequency representation
下载PDF
导出
摘要 提出了一种多线性调频信号自适应时频表示方法及其快速算法:首先采用分数阶傅里叶变换的快速算法计算出模糊函数,再通过Radon-Ambiguity变换设计出信号的最优核函数,以滤除噪声和多线性调频信号在模糊域中的互项,最后通过二维傅里叶变换得到信号的时频表示。在多分量线性调频信号情况下借助"clean"的思想来抑制强分量对弱分量的干扰。仿真表明该方法在低信噪比环境下也十分有效,且运算复杂度小。 A method for multi-LFM signals adaptive time-frequency representation is proposed. Firstly, the ambiguity function is realized by fast algorithm of fractional Fourier transform. Secondly, the optimal kernel function is designed by Radon-Ambiguity transform, which can remove the cross term and partly noise. Finally, the time-frequency representation is realized by two-dimensional Fourier transform. To eliminate the mutual in- terference of multiple LFM components, especially the strong LFM signals to weak LFM signals, a scheme based on the idea of clean is proposed. The simulation results show that the method is effective even in low SNR environment with less computational complexity.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2008年第7期1245-1248,共4页 Systems Engineering and Electronics
关键词 时频表示 线性调频信号 分数阶傅里叶变换 RADON-AMBIGUITY变换 模糊函数 time-frequency representation linear frequency modulated (LFM) FRFT radon-ambiguitytransform ambiguity function
  • 相关文献

参考文献10

  • 1Baraniuk R G, Jones D L. Signal-dependent time-frequency analysis using a radially Gaussian kernel[J]. Elsevier, Signal Processing, 1993, 32: 263-284.
  • 2Jones D L, Baraniuk R G, An adaptive optimal-kernel time-frequency representation[J], IEEE Trans, on Signal Processing, 1995, 43(10): 2361-2371.
  • 3Ristic R, Boashash B. Kernel design for time-frequency representation: optimal kernel design[J]. IEEE Trans. on Signal Processing, 1993, 41(4) : 589- 602.
  • 4Ozdemir A K, Arikan O. Fast computation of the ambiguity function and the Wigner distribution on arbitrary line segments [J]. IEEE Trans. on Signal Processing, 2001, 49 (2): 381 - 393.
  • 5Ozaktas H M, Arlkan O, Kutay M A, et al. Digital computation of the fractional Fourier transform[J]. IEEE Trans, on Signal Processing, 1996, 44(9) : 2141 -2150.
  • 6Namias V. The fractional Fourier transform and its application in quantum mechanics[J]. J. Inst. Appl. Math., 1980, 25: 241 -265.
  • 7WANG M S, Chan A K, Chui C K. Linear frequency-modulated signal detection using radon-ambiguity transform [J]. IEEE Trans. on Signal Processing, 1998, 46(3) : 571 - 586.
  • 8赵兴浩,陶然,周思永,王越.基于Radon-Ambiguity变换和分数阶傅里叶变换的chirp信号检测及多参数估计[J].北京理工大学学报,2003,23(3):371-374. 被引量:43
  • 9TAO J, Steinberg B D. Reduction of sidelobe and speckle artifacts in microwave imaging: the CLEAN technique[J]. IEEE Trans. on Antennas and Propagation, 1988, 36(4) : 543 - 556.
  • 10齐林,陶然,周思永,王越.基于分数阶Fourier变换的多分量LFM信号的检测和参数估计[J].中国科学(E辑),2003,33(8):749-759. 被引量:175

二级参考文献31

  • 1Tao Ran, Ping Xianjun, Zhao Xinghao. Detection and estimation of moving targets based on fractional Fourier transform [Z]. International Conference on Signal Processing, Beijing, 2002.
  • 2Barbarossa S. Analysis of multicomponent LFM signals by a combined Wigner-Hough transform[J].IEEE Trans Signal Processing, 1995,43 :1511 -- 1515.
  • 3Wang Minsheng, Chan Andrew K. Linear frequencymodulated signal detection using Radon-Ambiguity transform[J]. IEEE Trans Signal Processing, 1998,46:571--586.
  • 4Almeida B. The fractional Fourier transform and time-frequency representation[J]. IEEE Trans Signal Processing, 1994,42:3084-- 3091.
  • 5Ozaktas H M, Kutay M A. Digital computation of the fractional Fourier transform[J]. IEEE Trans Signal Processing, 1996,44(9) : 2141 -- 2150.
  • 6Pei S C, Yeh M H. Discrete fractional Fourier transform based on orthogonal projections[J]. IEEE Trans Signal Processing, 1999,47 ( 5 ) : 1335 -- 1348.
  • 7Candan C, Kutay M A. The discrete fractional Fourier transform[J]. IEEE Trans Signal Processing,2000,48(5) : 1329-- 1337.
  • 8Tao Ran, Ping Xianjun, Zhao Xinghao. A novel discrete fractional Fourier transform [Z]. CIE International Conference of Radar, Beijing,2001.
  • 9Boashash B. Estimating and interpreting the instantaneous frequency of a signal. Proc IEEE, 1992, 80(4): 519-569.
  • 10Diuric P M. Kay S M. Parameter estimation of china signal. IEEE Trans on ASSP, 1990, 38(12): 2118-2126.

共引文献204

同被引文献16

引证文献2

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部