期刊文献+

基于独立分量分析的CDMA抗干扰时延估计算法 被引量:1

Study on anti-interference code delay estimated algorithms of CDMA based on ICA
下载PDF
导出
摘要 基于独立分量分析的思想,采用经典的FastICA算法结合传统的匹配滤波检测技术实现对CDMA同步时延的精确估计,有效地抑制了多址干扰和远近效应对CDMA接收性能的影响。并针对多径干扰对时延精确提取的影响,提出了一种基于匹配滤波的多径干扰消除时延提取算法,有效地提高了时延精确提取的准确性。实验结果表明了算法的有效性。 The classical FastICA algorithm combined with the conventional match filtered technique implements the accurate code timing estimation of CDMA synchronization and effectively suppresses the influence of both MAI (multiple access interference) and the near far problems on the CDMA receiver performance. A multi-path interference cancellation algorithm based on match filtered techniques is proposed to enhance the veracity of accurate code timing extraction. The experiment results show the effectiveness of the algorithm.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2008年第7期1256-1259,共4页 Systems Engineering and Electronics
关键词 CDMA 时延估计 多址干扰 远近效应 CDMA code timing estimation MAI near far effect
  • 相关文献

参考文献6

  • 1COMON P. Independent component analysis-a new concept[J]. Signal Processing. 1994. 36 : 287 - 314.
  • 2Hyvarinen A, Oja E, Independent component analysis: algorithms and applications[J], Neural Networks, 2000, 13:411 - 430.
  • 3Hyvarinen A, Oja E. A fast fixed point algorithm for independent component analysis[J]. IEEE Trans. on Neural Computation, 1997, 9(7):1483-1492.
  • 4丁志刚,朱孝龙,焦李成.基于独立分量分析的DS-CDMA系统接收机[J].电子学报,2000,28(z1):97-100. 被引量:3
  • 5王志国,和卫星.独立分量分析在CDMA系统中的应用研究[J].计算机测量与控制,2005,13(4):380-382. 被引量:1
  • 6Cristescu R, Ristaniemi T, Joutsensalo J, et al. CDMA delay estimation using a fast ICA algorithm[C]//Proc, of the IEEE Int. Syrup. on Personal, Indoor, and Mobile Communications (PIMRC' 00), London, United Kingdom, September, 2000: 17-19.

二级参考文献15

  • 1[1]Sergio Verdú.Multi-user Detection[M].Cambridge,UK:Cambridge University Press,1998.
  • 2[2]P.Comon.Independent component analysis,a new concept?[J].Signal Processing,1994,36:287-314.
  • 3[3]J.F.Cardoso and B.Laheld.Equivariant adaptive source separation[J].IEEE Transactions On Signal Processing,1996,44:3017-3030.
  • 4[4]H.H.Yang and S.I.Amari.Adaptive on-line learning algorithms for blind separation-maximum entropy and minimum mutual information[J].Neural Computations,1997,9:1457-1482.
  • 5[5]S.I.Amari.Natural gradient works efficiently in learning[J].Neural Computations.1998,10:251-276.
  • 6[6]H.H.Yang.Serial updating rule for blind separation derived from the mothod of scoring[J].IEEE Trans.On Signal Processing,1999,47(8):2279-2285.
  • 7[7]Michael Honig et al.Blind Adaptive Multi-user Detection[J].IEEE Transaction On Information Theory,1995,41:944-960.
  • 8[8]J.Karhunen,A.Cichocki,W.Kasprzak,and P.Pajunen.On Neural Blind Separation with Noise Suppression and Redundancy Reduction[J].in Int.J.Neural Systems,1997,8(2):219-132.
  • 9[9]A.Cichocki,I.Sabala,and S.I.Amari.Intelligent neural networks for blind signal separation with unknown number of source[A].in Proc.Conf.Engineering of Intelligent Systems[C],1998.
  • 10ProakisJG.Digital Communicalions[M].北京:电子工业出版社,2001..

共引文献2

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部