期刊文献+

无向马尔科夫毯分类器与集成

Undirected Markov blanket classifier and integration
下载PDF
导出
摘要 无向马尔科夫毯结构是属性和类变量之间的最重要依赖结构之一,建立无向马尔科夫毯分类器的核心是无向马尔科夫毯结构学习。针对现有无向马尔科夫毯结构学习方法具有低效率和可靠性,以及不具实用性等问题,基于贝叶斯网络理论、马尔科夫网络理论和依赖分析方法进行具有多项式复杂度的无向马尔科夫毯结构和分类器学习,来避免这些问题。并建立最优性定理、可转换定理、可靠性定理和局部化定理为其提供理论依据。同时,对小例子集情况,给出了近似学习方法,并将无向马尔科夫毯分类器扩展为联合分类器,以有效地进行小例子集分类。 The undirected Markov blanket structure is one of the most important dependency structures be tween attribute and class variables. The key problem of learning undirected Markov blanket classifier is to build the undirected Markov blanket.structure. At present, the methods of learning undirected Markov blanket structure are of low efficiency and low reliability and are unpractical. The learning method of both undirected Markov blanket structure and classifier with polynomial complexity is presented based on the theory of Bayesian net- works, the theory of Markov networks and the dependency analysis way. The problems above can be avoided. The built optimal theorem, transferable theorem, reliability theorem and local theorem are the theory foundation of the presented method. The approximate learning arithmetic is developed and an undirected Markov blanket classifier is extended as a unite classifier to suit for small data classification.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2008年第7期1333-1338,共6页 Systems Engineering and Electronics
基金 国家自然科学基金(60675036) 上海市重点学科项目(P1601) 上海市教委重点项目(05zz66)资助课题
关键词 分类器 贝叶斯网络 马尔科夫网络 马尔科夫毯 classifier Bayesian network Markov network Markov blanket
  • 相关文献

参考文献10

  • 1Pearl J. Probabilistic reasoning in intelligent systems: networks of plausible inference [M]. San Mateo, California, Morgan Kaufmann, 1988:117 - 133.
  • 2Xiang Y, Wong S K, Cercone N. A 'Microscopic' study of minimum entropy search in learning decomposable Markov networks [J]. Machine Learning, 1997, 26(1), 65-92.
  • 3Zhen Z, Yeung R W. On characterization of entropy function via information inequalities[J]. IEEE Trans. on Information Theory, 1998, 44(4): 1440-1452.
  • 4王双成,苑森淼.具有丢失数据的可分解马尔可夫网络结构学习[J].计算机学报,2004,27(9):1221-1228. 被引量:19
  • 5王双成,苑森淼.具有丢失数据的贝叶斯网络结构学习研究[J].软件学报,2004,15(7):1042-1048. 被引量:62
  • 6Cheng J, Greiner R, Kelly J. Learning Bayesian networks from data: An efficient approach based on information-theory[J]. Artificial Intelligence. 2002, 137 (1 - 2) : 43 - 90.
  • 7Chickering D M. Learning equivalence classes of Bayesian network structures[J]. Machine Learning , 2002, 2(3): 445-498.
  • 8王双成,张邦佐,王辉,苑森淼.基于贝叶斯网络理论的TAN分类器无向依赖扩展[J].小型微型计算机系统,2005,26(1):42-45. 被引量:3
  • 9Murphy S L, Aha D W. UCI repository of machine learning databases[OL], http:// www. ics. uci. edu/-mlearn/MLRepository. Html, 2005.
  • 10Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection[C] // Proceedings of the 14th International Joint Conference on Artificial Intelligence ( IJ- CAI), Montreal , Quebec , Canada, Morgan Kaufmann , 1995: 1137 - 1143.

二级参考文献30

  • 1Pearl J.. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. San Mateo, California: Morgan Kaufmann, 1988, 117~133
  • 2Xiang Y., Wong S.K.M., Cercone N.. A 'Microscopic' study of minimum entropy search in learning decomposable Markov networks. Machine Learning, 1997, 26(1): 65~92
  • 3Zhen Z., Yeung R.W.. On characterization of entropy function via information inequalities. IEEE Transactions on Information Theory, 1998, 44(4): 1440~1452
  • 4Buntine W.L.. Chain graphs for learning. In: Proceedings of the 17th Conference Artificial Intelligence, San Francisco, Morgan Kaufmann, 1995, 46~54
  • 5Heckerman D.. Bayesian networks for data mining. Data Mining and Knowledge Discovery, 1997, 1(1): 79~119
  • 6Chow C.K., Liu C.N.. Approximating discrete probability distributions with dependence trees. IEEE Transactions on Information Theory, 1968, 14(3): 462~467
  • 7Mao S.S., Wang J.L., Pu X.L.. Advanced Mathematical Statistics. Beijing: Higher Education Press, 1998(in Chinese)(茆诗松, 王静龙, 濮晓龙. 高等数理统计. 北京: 高等教育出版社, 1998)
  • 8Geman S., Geman D.. Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984, 6(6): 721~742
  • 9Domingos P., Pazzani M.. On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning, 1997, 29(2~3): 103~130
  • 10Cheng J., Greiner R., Kelly J.. Learning Bayesian networks from data: An efficient approach based on information-theory. Artificial Intelligence, 2002, 137(1~2): 43~90

共引文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部