期刊文献+

基于隐Markov树故障诊断的确定退火设计

Deterministic annealing design of hidden Markov tree based fault diagnosis
下载PDF
导出
摘要 隐Markov树(HMT)模型故障诊断作为一种模式识别问题,其目标是得到最小分类误差。由于误分类率函数为分段线性常数,存在许多局部极小值,因此难以直接最小化。提出使用确定退火(DA)方法来最小化误分类率函数,通过在设计过程中随机化分类决策,并使用Shannon熵限制其随机程度,得到一个光滑的误分类率函数,它在熵为0时收敛到原来的误分类率函数。给出了优化过程中梯度计算的上行-下行算法和基于梯度下降的参数重估公式。提出的基于DA的优化方法用于减速器故障诊断,结果表明使用DA较ML估计可以得到更高的识别率。 As one kind of pattern recognition question, the ultimate objective of hidden Markov tree (HMT) based fault diagnosis is to minimize misclassification rate. The misclassification rate is difficult to optimize directly because the cost surface is riddled with shallow local minima. The deterministic annealing (DA) design methods which minimize the misclassification cost are proposed. In the DA approach, the classifier's decision is randomized during design and the level of randomness is controlled via a constraint on the Shannon entropy. The cost function is smooth and converges to the MCE cost at the limit of zero entropy. This algorithm is implemented by a low complexity upward-downward procedure and the parameter restimation is implemented by gradient descent. The application of the presented DA methods to a gearbox fault diagnosis shows that the DA modeling can effectively improve fault identification rate over ML modeling.
作者 桂林 武小悦
出处 《系统工程与电子技术》 EI CSCD 北大核心 2008年第7期1359-1365,共7页 Systems Engineering and Electronics
基金 湖南省自然科学基金资助课题(07JJ3133)
关键词 隐MARKOV树 确定退火 最小分类误差 故障诊断 hidden Markov tree deterministic annealing minimum classification error fault diagnosis
  • 相关文献

参考文献15

  • 1Crouse M S, Novak R D, Baraniuk R G. Wavelet based statistical signal processing using hidden Markov models[J]. IEEE Trans. on Signal Processing, 1998, 46(4) : 886 - 902.
  • 2Li Zhang, Shiming Ji, Yi Xie, et al. Research on LIF image denoising based on wavelet-domain multiscale HMT model[C]// The Sixth World Congress on Intelligent Control and Automation, 2006: 10188-10191.
  • 3Bhardwaj P, Carin L. Infrared-image classification using hidden Markov trees[J]. IEEE Trans. on Pattern Analysis and Ma chine Intelligence, 2002, 24: 1394-1398.
  • 4Romberg J, Hyeokho C, Baraniuk R, et al. Multiscale classification using complex wavelets and hidden Markov tree models [C]//Proc. of International Conference on Image Processing, 2000, 2:371-374.
  • 5武小悦.基于隐Markov树的设备状态综合诊断模型[J].系统工程与电子技术,2006,28(7):1034-1038. 被引量:2
  • 6桂林,武小悦.隐马尔可夫树模型在机械状态诊断中的应用[J].机械工程学报,2007,43(1):219-224. 被引量:5
  • 7Chang P C, Juang B H. Discriminative training of dynamic programming based speech recognizers[J]. IEEE Trans. on Speech Audio Processing, 1993, 1:135 - 143.
  • 8Juang B H, Chou W, Lee C H. Minimum classification error rate methods for speech recognition[J]. IEEE Trans. on Speech Audio Processing, 1997, 5:257 - 265.
  • 9Katagiri S, Juang B H, Lee C H. Pattern recognition using a family of design algorithms based upon the generalized probabilistic descent method[C]//Proc. IEEE, 1998, 86:2345 - 2373.
  • 10Rose K, Gurewitz E, Fox G C. Vector quantization by deterministic annealing[J]. IEEE Trans. on Information Theory, 1992, 38(4) : 1249- 1257.

二级参考文献33

  • 1Yen G G,Lin K.Wavelet packet feature extraction for vibration monitoring[J].IEEE Trans.on Industrial Electronics,2000,47:650-667.
  • 2Wang W J,McFadden P D.Application of wavelets to gearbox vibration signals for fault detection[J].Journal of Sound and Vibration,1996,192:927-939.
  • 3Rabiner L R.A tutorial on hidden Markov models and selected application in speech recognition[J].Proceedings of IEEE,1989,77(2):257-285.
  • 4Ertunc H M,Loparo K A,A decision fusion algorithm for tool wear condition monitoring in drilling[J].Machine Tools & Manufacture,2001,41:1347-1362.
  • 5Cheng W T,Chan K L.Classification of electrocardiogram using hidden Markov models[C]//Proc.of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society,Hong Kong,China,1998,20(1):143-146.
  • 6Ocak H,Loparo K A.A new bearing fault detection and diagnosis scheme based on hidden Markov modeling of vibration signals[C]//Proceedings of the 2001 IEEE International Conference on Acoustics,Speech,and Signal Processing,Salt Lake City,USA,2001(5):3141-3144.
  • 7Rubini R,Meneghetti U.Application of the envelope and wavelet transform analysis for the diagnosis of incipient faults in ball bearings[J].Mechanical Systems and Signal Processing,2001,15(2):287-302.
  • 8Li X,Dong S,Yang Z.Discrete wavelet transform for tool breakage monitoring[J].International Journal of Machine Tools and Manufacture,1999,39(12):1935-1944.
  • 9Lin J.Feature extraction of machine sound using wavelet and its application in fault diagnosis[J].NDT & E International,2001,34(1):25-30.
  • 10Nikolaou N G,Antoniadis I A.Rolling element bearing fault diagnosis using wavelet packets[J].NDT & E international,2002,35(3):197-205.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部