期刊文献+

模拟型演化硬件中可重构器件的比较研究 被引量:1

Comparative Study on Reconfigurable Devices for Analog Evolvable Hardware
下载PDF
导出
摘要 演化硬件的研究者受困于满足可演化要求的灵活可重构硬件平台的匮乏。一方面,虽然现有商用可重构平台多数具有动态可局部重构能力,但是其设计目的不是用来研究演化硬件的。另外一方面,用户定制的面向演化硬件研究的芯片没有商用化,而且也不太可能在最近走向商用市场。本文研究了两类用来进行模拟演化硬件研究的可重构器件:商用的现场可编程模拟阵列和用户定制的现场可编程三极管阵列。通过比较研究,作者认为在FPTA类定制用于演化的可重构平台商用化之前,在FPAA平台上开展EHW的研究是有意义的,因为FPAA已经具有充分灵活的重构接口和充足的可重配置资源。 The lack of flexible reconfigurable devices essential to the study of hardware evolution process, namely evolvable hardware (EHW), has led the researchers into a dilemma. On one hand, the original purpose of commercial reconfigurable devices is not for evolvable hardware dedicatedly, though, most of which do have the ability of dynamically reconfiguration which is necessary for evolution. On the other hand the custom designed EHW-oriented chips are not commercial available, not either seem to be available in the near future. Two categories of reconfigurable analog devices, commercial field programmable analog array (FPAA) devices and custom designed field programmable transistor array (FPTA) devices are studied referring to their suitability for designing evolvable hardware. The authors argue that until the FPTA begin commercial available, it's significant to go through FPAA EHW research since these devices already have flexible reconfiguration interface and enough on-chip reprogrammable resources.
出处 《电子器件》 CAS 2008年第4期1226-1231,共6页 Chinese Journal of Electron Devices
基金 国防科工委"十一五"民用航天预先研究项目资助(C5220063103)
关键词 演化硬件 可重构器件 现场可编程模拟阵列FPAA 现场可编程三极管阵列FPTA 粒度 evolvable hardware EHW reconfigurable devices field programmable analog array FPAA field programmable transistor array FPTA granularity
  • 相关文献

参考文献17

  • 1Keymeulen D, Zebulum R S, Jin Y, et al. Fault-Tolerant Evolvable Hardware Using Field-Programmable Transistor Arrays[J]. IEEE Transactions on Reliability. 2000, 49 (3): 305-316.
  • 2Murakawa M, Yoshizawa S, Adachi T, et al. Analogue EHW Chip for Intermediate Frequency Filters[M]. LNCS 1478, Berlin: Springer-Verlag Berlin, 1998: 134-143.
  • 3Higuchi T. Towards Flexible Mechanisms for Association- Evolvable Hardware with Genetic Learning[J]. Bulletin of the Electrotechnical Laboratory. 1993, 57(12): 55-60.
  • 4Mange D. Life in Silicon[C]//11th European Conference on Circuit Theory and Design (ECCTD'93). 1993: 145-179.
  • 5Stoica A, Fukunaga A, Hayworth K, et al. Evolvable Hardware for Space Applications [ M ]. LNCS 1478, BERLIN: SPRINGER-VERLAG BERLIN, 1998: 166-173.
  • 6Zebulum R S, Stoica A, Keymeulen D. Design Process of an Evolutionary Oriented Reconfigurable Architecture[C]. Proceedings of the 2000 Congress on Evolutionary Computation (CEC'00), Jul 16-Jul 19 2000, California, CA, USA: 529- 536.
  • 7何亚宁.开关电容现场可编程模拟阵列FPAA的频域SPICE仿真[J].电子器件,2005,28(2):334-337. 被引量:1
  • 8Stoica A, Zebulum R, Keymeulen D, et al. Transistor-Level Circuit Experiments Using Evolvable Hardware [M]. LNCS 3562 Berlin: Springer-Verlag Berlin, 2005: 366-375.
  • 9Sekanina L, Zebulum R S. Intrinsic Evolution of Controllable Oscillators in FPTA-2 [C]//6th International Conference on Evolvable Systems: From Biology to Hardware (ICES2005), Sep 12-14 2005. Sitges, Spain: 98-107.
  • 10Keymeulen D, Fink W, Ferguson M I, et al. Evolutionary Computation Applied to the Tuning of MEMS Gyroscopes [C]//Genetic and Evolutionary Computation Conference (GECCO 2005), Washington, D. C. , United States: 927- 932.

二级参考文献5

  • 1Kurth C F and Moschytz G S.Nodal analysis of switched-capacitor networks[J]. IEEE Trans Circuits Syst,Feb. 1979,CAS-26:93-104.
  • 2Kurth C F and Moschytz G S.Two-port analysis of switched-capacrtor networks using four-port equivalent circuits in the z-domain[J]. IEEE Trans Circuits Syst,Mar. 1979,CAS-26:166- 180.
  • 3Ghausi M S and Laker K R. Modern Filter Design - Active RC and Switched Capacitor[M].Prentice-Hall, Inc., USA, 1981.
  • 4NELIN BERT D. Analysis of switched-capacitor networks using general-purpose circuit simulation programs[J]. IEEE Trans Circuits Syst, Jan. 1983,CAS-30:43-48.
  • 5Intusoft Newsletter Issue #04, Feb. 1987.

同被引文献14

  • 1王友仁,崔坚,朱开阳,姚睿.仿生物态模拟型硬件理论与关键技术研究[J].南京航空航天大学学报,2004,36(5):595-599. 被引量:8
  • 2陈俊,王友仁.基于FPTA的动态可重构模拟电路研究[J].测控技术,2006,25(4):77-79. 被引量:3
  • 3原亮,杨文飞,张政保,吴彩华.使用常规IC的演化硬件电路设计实例[J].计算机测量与控制,2006,14(11):1518-1520. 被引量:3
  • 4J.F.Miller, P. Thompson Cartesian Genetic Programming [C].Proceedings of the Third European Conference on Genetic Programming.LNCS,Vo].1802, (2000)pp. 121-132, Springer-Verlag.
  • 5D.Joh,V.K.Vassilev, J. F. Miller. Towards the Automatic Design of More Efficient Digital Circuits. Proceedings of the Second NASA/DoD Workshop on Evolvable Hardware, 2000. IEEE Computer Society. 13-15 July 2000. Pages:151- 160.
  • 6S.Harding and J. F. Miller. Evolution of Robot Controller Using Cartesian Genetic Programming M. Keijzer et al.(Eds.):EuroGP 2005, LNCS 3447, pp.62 - 73,2005.
  • 7S. Harding, J. F. Miller, W. Banzhaf. Self Modifying Cartesian Genetic Programming: Parity [C].2009 IEEE Congress on Computation, Trondheim, Norway. IEEE Computational Intelligence Society, 2009:285-292.
  • 8T.Kalganova.Bidirectional Incremental Evolution in Extrinsic Evolvable Hardware [C].Proceedings of the Second NASA/DoD Workshop on Evolvable Hardware (EH2000),J. Lohn, A. Stoica, and D. Keymeulen, Eds. Pain Alto, CA, USA, 2000:65-74.
  • 9E.Stomec,T. Kalganova, C. Lambert. Generalized Disjunction Decomposition for Evolvable Hardware [J].IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS--PART B,2006,36(5):1024-1043.
  • 10E. Stomeo,T. Kalganova. Improving EHW Performance Introducing a New Decomposition Strategy [C].2004 IEEE Conference on Cybernetics and Intelligent Systems. pp: 439--444.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部