期刊文献+

KNN-SVM网页分类器介绍

Introduction of KNN-SVM Page Classifier
下载PDF
导出
摘要 网页分类算法中,KNN算法的缺陷之一是分类效率较低,分类的效果很大程度上依赖于相似度函数和参数K的选择。同时,基于支持向量机(SVM)的网页分类器的限制在于要求处理的向量是数值型向量,而网页特征向量往往是词条特征向量。利用KNN算法生成训练样本,进而将词条特征向量数值化,再利用支持向量机分类器对测试网页进行分类,构建了一种新的分类器——KNN-SVM分类器。 In all kind of methods of web page classifications, KNN's efficiency is not good enough, and the performance depends on the similarity function and the parameter K. Meanwhile, the limitation of SVM is the requirement of numeric vectors, but the feature vector of a page is often based on words. Through making use of KNN to generate training samples, and turns word vectors to numeric vectors, then uses SVM to finish the classification, so as to build a new classifier, KNN-SVM classifier.
出处 《现代计算机》 2008年第7期92-94,共3页 Modern Computer
关键词 KNN SVM 词条特征向量 数值化 K-Nearest Neighbor(KNN) Support Vector Machine(SVM) Word Vectors Numeric
  • 相关文献

参考文献7

  • 1Richard O.Duda Peter E.Hart David G.Stork著,李宏东,姚天翔,等译.模式分类.北京:机械工业出版社,2005:16-18.
  • 2LI Bao-li, YU Shi-wen, LU Qin. An Improved K-Nearest Neighbor Algorithm for Text Categorization. Proceedings of the 20th International Conference on Computer Processing of Oriental Languages, Shenyang, China, 2003 : P2
  • 3Thorsten Joachims. Text Categorization with Support Vector Machine, 1998 : P3-6
  • 4Fabrizio Sebastian. Machine Learning in Automated Text Categorization. ACM,2002
  • 5Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a Library for Support Vectormachines, 2007. Software available at http://www.csie.ntu.edu.tw/-cjlin/libsvm
  • 6S. Knerr, L. Personnaz, G. Dreyfus. Single-Layer Learning Revisited: A Stepwise Procedure for Building and Training a Neural Network. Neurocomputing: Algorithms, Architectures and Applications. J. Fogelman, Ed. New York:Springer- Verlag, 1990.
  • 7Nello Cristianini,John Shawe-Taylor.An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods.机械工业出版社,2005-7(第1版第1次印刷)

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部