期刊文献+

基于改进BP神经网络的菌体浓度软测量 被引量:17

Soft sensor of biomass based on improved BP neural network
下载PDF
导出
摘要 提出一种改进的BP神经网络(IBPNN)用以建立发酵过程中菌体浓度软测量模型.结合菌体浓度变化范围大这一特点,将传统BP网络的误差函数进行了改进,并利用最优停止法对网络进行训练,避免了过拟合现象.最后针对诺西肽发酵过程中菌体浓度的估计问题,根据隐函数定理选取辅助变量,应用IBPNN建立菌体浓度软测量模型,实验结果验证了所提方法的有效性. An improved BP neural network (IBPNN) is presented to develop a soft sensor model of biomass in fermentation processes. Combined with the characteristic that biomass can vary in a wide range, the error function of the traditional BP network is improved. Meanwhile, optimal stopping rule is used to avoid over-fitting. According to the estimation of biomass in Nosiheptide fermentation process, the secondary variables are selected according to the implicit function existence theorem, and then a soft sensor model of biomass is developed by using the IBPNN, The testing result shows the effectiveness of the presented approach.
出处 《控制与决策》 EI CSCD 北大核心 2008年第8期869-873,878,共6页 Control and Decision
基金 国家973计划项目(2002CB312201)
关键词 软测量 神经网络 算法改进 辅助变量选取 发酵 Soft sensor Neural network Algorithm improvement Selection of secondary variables Fermentation
  • 相关文献

参考文献14

  • 1Zhao Y. Studies on modeling and control of continuous biotechnical processes [D]. Norway: Norwegian University of Science and Technology, 1996.
  • 2Cheruy A. Software sensors in bioproeess engineering [J]. J of Bioteehnology, 1997, 52(3): 193-199.
  • 3Gee D A, Ramirez W F. On-line state estimation and parameter identification for batch fermentation [J]. Biotechnology Progress, 1996, 12(1): 132-140.
  • 4Marcos J, Arauzo B. Automatization of a penicillin production process with soft sensors and an adaptive controller based on neuro fuzzy systems[J]. Control Engineering Practice, 2004, 12(9): 1073-1090.
  • 5Shene C, Diez C, Bravo S. Neural networks for the prediction of the state of zymomonas mobilis CP4 batch fermentations [J]. Computers and Chemical Engineering, 1999, 23(8): 1097-1108.
  • 6Tholuder A, Ramirez W F. Neural network modeling and optimization of induced foreign protein production [J]. AIChE Journal, 1999, 45(8): 1660-1670.
  • 7Adilson J, Rubens M. Soft sensors development for online bioreactor state estimation [J]. Computers and Chemical Engineering, 2000, 24 (2) : 1099-1103.
  • 8Cataltepe Z, Abu-mostafa Y S, Magdon-Ismail M. No free lunch for early stopping [J]. Neural Computation, 1999. 11(4): 995-1009.
  • 9王旭东,邵惠鹤.RBF神经元网络在非线性系统建模中的应用[J].控制理论与应用,1997,14(1):59-66. 被引量:68
  • 10魏海坤,徐嗣鑫,宋文忠.神经网络的泛化理论和泛化方法[J].自动化学报,2001,27(6):806-815. 被引量:97

二级参考文献10

共引文献200

同被引文献159

引证文献17

二级引证文献89

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部