期刊文献+

直接支持向量机 被引量:3

Direct support vector machine
下载PDF
导出
摘要 基于最小二乘支持向量机变形,得到一个极其简单快速的分类器——直接支持向量机.与最小二乘支持向量机相比,该分类器只需直接求解一个更小规模矩阵的逆,大大减小了计算量,并未降低分类精度.从理论上证明了该矩阵可逆,保证了分类面存在的唯一性.对于线性情形,采用Sherman-Morrison-Woodbury公式降低可逆矩阵的维数,进一步减少了计算复杂度,使其可适用于更大规模的样本集.数值实验表明,新分类器可行并具有上述优势. Based on the transmutation of least square support vector machine (I.SSVM). an extremely fast and simple classifier direct support vector machine (DSVM) is proposed. Compared with I.SSVM, the classifier only needs to calculate the inversion of a smaller scale matrix, which greatly reduces the computing amount and has no decreasing classification accuracy. The inversion of the matrix is guaranteed theoretically, and hence a unique classifying hyperplane is existed. For linear classification, the Sherman-Morrison-Woodbury formula is employed to reduce the dimension of the matrix and the computing complexity is decreased, so that the classifier can he applied to larger scale dataset. Numerical experiments show that the classifier is easily operated and has the above advantages.
作者 杜喆 刘三阳
出处 《控制与决策》 EI CSCD 北大核心 2008年第8期935-937,943,共4页 Control and Decision
基金 国家自然科学基金项目(60574075 60705004)
关键词 支持向量机 分类 线性方程组 最小二乘 Support vector maehine Classifieation Linear equation system Least squares
  • 相关文献

参考文献11

  • 1Vapnik V. The nature of statistical learning theory[M]. New York: Springer, 1995.
  • 2Cristianini N, Schawe-Taylor J. An introduction to support vector machines [M]. Cambridge: Cambridge University Press, 2000.
  • 3Platt J. Fast training of support vector machines using sequential minimal optimization[C]. Advances in Kernel Methods Support Vector Learning. Cambridge, 1999: 185-208.
  • 4周伟达,张莉,焦李成.线性规划支撑矢量机[J].电子学报,2001,29(11):1507-1511. 被引量:15
  • 5Suykens J A K, Vandewalle J. Least square support vector machine classifiers [J]. Neural Processing Letters. 1999. 9(3): 293-300.
  • 6Gestel T V, Suykens J A K. Benchmarking least squares support vector machine classifiers [J]. Machine l,earning, 2004, 54(1): 5-32.
  • 7王定成,姜斌.在线稀疏最小二乘支持向量机回归的研究[J].控制与决策,2007,22(2):132-137. 被引量:24
  • 8朱永生,王成栋,张优云.二次损失函数支持向量机性能的研究[J].计算机学报,2003,26(8):982-989. 被引量:8
  • 9Mangasarian O L, Musicant D R. Lagrangian support vector machines [R]. Madision: University of Wisconsin, 2000.
  • 10Mangasarlan O L. Musicant D R. Active support vector machine classification[R]. Madision: University of Wisconsin. 2000.

二级参考文献24

  • 1程云鹏 张凯院 等.矩阵理论[M].西安:西北工业大学出版社,1989..
  • 2Vapnike V N. The Nature of Statistical Learning Theory.New York : Springer-Verlag, 1998.
  • 3Chapelle O, Vapnik V N, Bousquet O etal. Choosing multiple parameters for support vector machines. Machine Learning,2002, 46(1) :131-159.
  • 4Duan K, Keerrthi S S, AN Poo. Evaluation of simple performance measures for tuning SVM hyperparameters. Department of Mechanical Engineering, National University of Singapore:Technical Report, Control Division Technical Report CD-01-11, 2001.
  • 5Keerrthi S S. Efficient tuning of SVM hyperparameters using radius/margin bound and iterative algorithms. Department of Mechanical Engineering, National University of Singapore:Technical Report, Control Division Technical Report CD-01-12, 2001.
  • 6Vapnik V N, Chapelle O. Bounds on error expectation for support vector machine. Neural Computation, 2000,12 (9) : 2013-2036.
  • 7Burges C J C. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 1998, 2(2) :121-167.
  • 8Scholkopf B, Mika S, Burges CJ C etal. Input spaces vs. feature space in kernel-based methods. IEEE Transactions on Neural Networks, 1999,10(5) : 1000- 1017.
  • 9Burges C J C, Scholkopf B. Improving the accuracy and speed of support vector machines. Neural Information Processing Systems, 1997,9(7) :375-381.
  • 10Suykens J A K, Lukas L, Vandewalle J. Sparse least squares support vector machine classifiers. In: Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS 2000), Geneva, Switzerland, 2000. 2757-2760.

共引文献44

同被引文献23

引证文献3

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部