期刊文献+

正相关频繁项集的挖掘算法 被引量:1

A Mining Algorithm of Positively Correlated Frequent Itemsets
下载PDF
导出
摘要 由频繁项集产生的关联规则往往不能保证规则前、后件中的项是正相关的,因此可能产生无意义的关联规则;当这些关联规则用于分类时,会产生大量无用分类规则,增加了时间开销.因此,基于数学期望提出了正相关的频繁项集的分类算法.该算法在挖掘正相关频繁项集时,利用置信度进行规则选取,生成正相关关联规则组成的分类器对数据集进行分类.实验表明,这种分类算法可以大幅度减少所产生的频繁项集数量,分类准确率达到C4.5和CMAR的水平,且显著减少了算法的时间. The association rules from frequent itemsets can not ensure items positive correlation in the antecedent or the consequent of a rule ,the association rule has no meaning, and these rules are used to classify, some no use classification rules will be produced, and the time complicated will be very high. So,a mining algorithm of the positively correlated frequent itemsets is proposed,when mining positively correlated itemsets,the method is selecting the predictive rules by confidence and generating classifiers which are composed by positively correlated association rules. The experiments show that,this algorithm can decrease the number of generated frequent itemsets largely,the classification accuracy is close to C4.5 and CMAR, and the time complicated degree has been reduced obviously.
作者 田保慧
出处 《华北水利水电学院学报》 2008年第4期65-67,共3页 North China Institute of Water Conservancy and Hydroelectric Power
关键词 频繁项集 关联规则 分类 正相关 frequent itemsets association rules classification positivity
  • 相关文献

参考文献4

  • 1编著责任者不详.数据挖掘:概念与技术[M].范明,孟小峰,译.北京:机械工业出版社,2001:185-222.
  • 2Han J, Pei J, Yin Y. Mining Frequent Patterns without Candidate Generation [ M ]. In SIGMOD' 00, Dallas, TX, 2000 : 1 -12.
  • 3范明,王秉政.一种直接在Trans-树中挖掘频繁模式的新算法[J].计算机科学,2003,30(8):117-120. 被引量:10
  • 4Li W,Han J,Pei J. CMAR:Accurate and Efficient Classification Based on Multiple Class-association Rules [ M ]. In ICDM' 01, San Jose, CA ,2001:369 - 376.

二级参考文献10

  • 1Agrawal R, Srikant R. Fast algorithms for Mining association rules. In:Proc 1994 Int'l Conf on Very Large Data Bases,Sept.1994- 487-499.
  • 2Park J S,Chen M S. Yu P S. An effective hash-based algorithm for mining association rules. In: Proc 1995 ACM-SIGMOD Int'l Conf on Management of Data, May 1995. 175-186.
  • 3Brin S,Motwani R ,Silverstein C. Beyond market basket: Generalizing association rules to correlations. In: Proc 1997 ACM-SIGMOD Int'l Conf on Management of Data, May 1997. 265-276.
  • 4Agrawal R,Srikant R. Mining sequential patterns, In ICDE'95, pages 3-14.
  • 5Dong G, Li J. Efficient mining of emerging patterns : Discovering trends and differences. In: Proc of the fifth ACM SIGKDD Intl Conf on Knowledge Discovery and Data Mining, Aug.1999. 43-52.
  • 6Han J, Pel J, Yin Y. Mining frequent patterns without candidate generation. In:Proc 2000 ACM-SIGMOD Intl Conf on Managernent of Data, May 2000. 1-12.
  • 7Bykowski A,Rigotti C. A Condensed Representation to Find Frequent Patterns. In:Proc of the 20th ACM SIGACT-SIGMODSIGART Symposium on Principles of Database Systems (PODS 2001) ,Santa Barbara,CA,USA,ACM Press ,2001. 267-273.
  • 8.[EB/OL].http://www. ics. uci. edu/-mlearn/MLRepository. html,.
  • 9HartJiawei KamberM著 范明 孟小峰译.效据挖掘:概念与技术[M].机械工业出版社,2001.149-184.
  • 10Han J Kamber M.数据挖掘:概念与技术[M].北京:机械工业出版社,2001..

共引文献9

同被引文献10

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部