期刊文献+

基于局部线性逼近的流形学习算法 被引量:5

A Manifold Learning Algorithm Based on Locally Linear Approximating
下载PDF
导出
摘要 流形学习方法是根据流形的定义提出的一种非线性数据降维方法,主要思想是发现嵌入在高维数据空间的低维光滑流形。局部线性嵌入算法是应用比较广泛的一种流形学习方法,传统的局部线性嵌入算法的一个主要缺点就是在处理稀疏源数据时会失效,而实际应用中很多情况还要面对处理源数据稀疏的问题。在分析局部线性嵌入算法的基础上提出了基于局部线性逼近思想的流形学习算法,其通过采用直接估计梯度值的方法达到局部线性逼近的目的,从而实现高维非线性数据的维数约简,最后在S-曲线上进行稀疏采样测试取得良好降维效果。 Manifold learning is a kind of nonlinear data dimensionality reduction method based on the definition of manifold.The main concept is to find out the low-dimensional smooth manifold embedded in the high-dimensional data space.The Locally Linear Embedding(LLE) Algorithm is applied widely,and one main disadvantage of the traditional Locally Linear Embedding method is that it will turn invalid when it deals with the spare source data,but in practice dealing with the problem of source data sparsity has to be confronted with in many cases.This paper comes up with the manifold learning algorithm based on locally linear approximating by analyzing the LLE Algorithm.It reaches the aim of locally linear approximating through adopting the way of assessing the grads directly,thus realizing the dimensionality reduction of the high-dimensional nonlinear data and finally achieves the fine effect of dimensionality reduction while sampling on the S-curve to test the sparsity.
作者 宋欣 叶世伟
出处 《计算机仿真》 CSCD 2008年第7期86-89,共4页 Computer Simulation
基金 国家自然科学基金资助项目(60435010)
关键词 流形学习 局部线性逼近 维数约简 拉普拉斯特征映射 Manifold learning Locally linear approximating(LLA) Dimensionality reduction Laplacian eigenmaps
  • 相关文献

参考文献11

  • 1Sam T Roweis, Lawrence K Saul. Nonlinear dimensionality reduction by locally linear embedding [ J ]. Science,2000,290 (5500) : 2323 - 2326.
  • 2Yan Shuicheng, Xu Dong, Zhang Benyu, Zhang Hongjiang. Graph Embedding: A General Framework for Dimensionallty Reduction [J]. Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, 2005, 2.
  • 3M Belkin, P Niyogi. Laplacian Eigenmaps for dimensionality reduction and data representation [ J ]. Neural Computation, 2003,15 (6) : 1373 - 1396.
  • 4Hs Seung, D D Lee. The manifold ways of perception[J]. Science, 2000,290(5500) :2268 - 2269.
  • 5J Tenenbaum, V D Silva, J Langford. A global geometric framework for nonlinear dimensionality reduction [ J ]. Science, 2000, 290(5500) :2319 - 2323.
  • 6D Donoho, C Grimes. Hessian Eigenmaps:New locally linear embedding techniques for high - dimensional data [ C ]. Proceedings of the National Academy of Sciences, 2003, 100 ( 10 ) : 5591 - 5596.
  • 7W H Chen. An Introduction to Differentiable Manifold [ M ]. 2nd ed. , Beijing: Higher Education Press, 2001 (in Chinese).
  • 8Z Y Zhang, H Y Zha. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment [ J ]. SIAM Journal of Scientific Computing, 2004,26 ( 1 ) :313 - 338.
  • 9徐蓉,姜峰,姚鸿勋.流形学习概述[J].智能系统学报,2006,1(1):44-51. 被引量:68
  • 10M Belkin, P Niyogi. Laplacian Eigenmaps and spectral techniques for embedding and clustering [ M ]. In : Advances in NIPS14. Cambridge, MA : MIT Press,2001. 585 - 591.

二级参考文献63

  • 1张振跃,查宏远.线性低秩逼近与非线性降维[J].中国科学(A辑),2005,35(3):273-285. 被引量:8
  • 2杨剑,李伏欣,王珏.一种改进的局部切空间排列算法[J].软件学报,2005,16(9):1584-1590. 被引量:36
  • 3[1]HYVRINEN A.Survey on independent component analysis[J].Neural Computing Surveys,1999,2 (4):94-128.
  • 4[2]TURK M,PENTLAND A.Eigenfaces for recognition[J].Journal of Cognitive Neuroscience,1991,3 (1):71-86.
  • 5[3]GONZALEZ R C,WOODS R E.Digital image processing:2nd ed[M].Beijing:Publishing House of Electronics Industry,2003.
  • 6[4]SEUNG H S,LEE D D.The manifold ways of perception[J].Science,2000,290(5500):2268-2269.
  • 7[5]TENENBAUM J,SILVA D D,LANGFORD J.A global geometric framework for nonlinear dimensionality reduction[J].Science,2000,290(5500):2319-2323.
  • 8[6]ROWEIS S,SAUL L.Nonlinear dimensionality reduction by locally linear embedding[J].Science,2000,290(5500):2323-2326.
  • 9[9]ZHANG C S,WANG J,ZHAO N Y,ZHANG D.Reconstruction and analysis of multi-pose face images based on nonlinear dimensionality reduction[J].Pattern Recognition,2004,37(1):325-336.
  • 10[13]BELKIN M,NIYOGI P.Laplacian eigenmaps for dimensionality reduction and data representation[J].Neural Computation,2003,15(6):1373-1396.

共引文献134

同被引文献62

  • 1谢毓湘,栾悉道,吴玲达,老松杨.新闻视频帧中的字幕探测[J].计算机工程,2004,30(20):167-168. 被引量:15
  • 2杜友田,陈峰,徐文立,李永彬.基于视觉的人的运动识别综述[J].电子学报,2007,35(1):84-90. 被引量:79
  • 3Jolliffe I T. Principal Component Analysis[M]. New York: Springer-Verlag, 1989.
  • 4Cox T F, Cox M A. Multidimensional Scaling[M]. London: Chapman & Hail,2001.
  • 5Common P. Independent Component Analysis: A New Con cept[J]. Signal Processing 1994,36(3):287-314.
  • 6Tenenbaum J B, de Silva V,John C, et al. A Global Geometric Framework for Nonlinear Dimensionaility Reduction[J]. Science, 2000,290(5500) :2319-2323.
  • 7Roweis S T, Saul L K. Nonlinear Dimensionality Reduction by Locally Linear Embedding[J]. Science, 2000,290(5500): 2323-2326.
  • 8Belkin M, Niyogi P. Laplacian Eigenmaps for Dimensionality Reduction and Data Representation[J]. Neural Computation, 2003,15(6) : 1373-1396.
  • 9Zhang Z Y, Zha H Y. Principal Manifolds and Nonlinear Dimensionality Reduction via Tangent Space Alignment[J]. SIAM Journal of Scientific Computing, 2005,26 (1) : 313-338.
  • 10Min WL, Lu L, He XF. Locality Pursuit Embedding[J]. Pattern Recongnition, 2004,37(4) : 781-788.

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部