期刊文献+

浮游生物光学计数器(OPC-1L)精度控制关键问题研究

OPTICAL PLANKTON COUNTER (OPC):PRECISION CONTROL
下载PDF
导出
摘要 浮游生物光学计数器(Optical Plankton Counter,OPC)能够在现场和实验室内对浮游动物、鱼卵和其它水生生物进行实时的数量统计和粒径划分,可以有效地替代繁琐的传统人工计数,快速获得丰度和生物量(体积)谱数据。但在实际应用中会存在很多问题,特别是如何进行标定和消除由于操作方法而引起的误差,这些问题的存在与解决,直接影响到观测数据的准确性和可靠性,以及能否利用此仪器进行快速、有效的浮游生物长时间序列监测与分析。本研究中作者针对计数过程中气泡干扰和样品重叠的问题,对进样系统进行了改良,通过大量实验研究了准确率与进样速度、生物形状之间的关系,探讨了如何通过速度控制有效提升准确率。通过改进循环水系统并加装相应的外围设施,使气泡问题得以解决。通过一系列的对比试验发现,控制Dmax(最大测样速度)在11个/s以内,可以使重合率维持在5%以下;控制Dmax在7个/s以内,可以使重合率降低到2%以下。同时发现生物的形状也会影响测量精度。结果表明,无论在何种测样速度下,随着长宽比(L/W)的增加,ESD(Equivalent Spherical Diameter,遮挡相同数量光线的球的直径)均值准确度均出现"V"形变化,先降低后增加,在L/W为4或6时准确度达到最低。本研究中作者有效解决了气泡干扰的问题,根据所确定的参数和目标种群体型相结合,选择合理的进样速度,完全能够达到98%以上的数量准确度和95%的ESD均值准确度。 Effectively and fast counting plankton, especially zooplankton, is crucial in marine ecological research. Among several systems previously developed, optical plankton counter (OPC) is the most potential and promising device. The shape of zooplankton, the density of sample, flow rate, and air bubble occurrence within the system affect the measurement accuracy. In this study, how these factors affect precision on these factors were studied, and the system performance was optimized by taking some technical adjustments. Agreement between the body shape (length/width) of certain species and the measurement accuracy can be realized by tuning the corresponding sampling speed.
出处 《海洋与湖沼》 CAS CSCD 北大核心 2008年第4期341-347,共7页 Oceanologia Et Limnologia Sinica
基金 中国科学院知识创新项目:KZCX3-SW-214号
关键词 浮游生物光学计数器 精度控制 干扰水平 OPC-1L, Precision control, Noise level
  • 相关文献

参考文献16

  • 1Beaulieu S E, Mullin M M, Tang V T et al, 1999. Using the optical plankton counter to determine the size distributions of preserved zooplankton samples. J Plankton Res, 21:1939-1956.
  • 2Edvardsen A, Zhou M, Tande K Set al, 2002. Zooplankton population dynamics: Measuring in situ growth and mortality rates using an Optical Plankton Counter. Mar Ecol Prog Ser, 227:205-219.
  • 3Edvardsen A, 2002. Determining zooplankton ESD signatures using an in situ OPC in the laboratory. GLOBEC Report, 17:16-21.
  • 4Gallienne C P, Robins D B, Woodd-Walker R S, 2001. Abundance, distribution and size structure of zooplankton along a 20 degree west meridional transect of the northeast Atlantic Ocean in July. Deep-Sea Res Ⅱ, 48:925-949.
  • 5Gallienne C P, Robins D B, 1998. Trans-oceanic characterization of zooplankton community size structure using an optical plankton counter. Fish Oceanogr, 7:147-158.
  • 6Grant S, Ward P, Murphy E et al,2000. Field comparison of an LHPR net sampling system and an Optical Plankton Counter (OPC) in the Southern Ocean. J Plankton Res, 22" 619-638.
  • 7Halliday N C, Coombs S H, Smith C, 2001. A comparison of LHPR and OPC data from vertical distribution sampling of zooplankton in a Norwegian fjord. Sarsia, 86:87-99.
  • 8Herman A W, Sameoto D D, Shunnian C et al, 1991. Sources of zooplankton on the Nova Scotia Shelf and their aggregations within deep-shelf basins. Cont Shelf Res, 11:211-238.
  • 9Herman A W, 1988. Simultaneous measurement of zooplankton and light attenuance with a new optical plankton counter. Cont Shelf Res, 8:205-221.
  • 10Herman A W, 1992. Design and calibration of a new Optical Plankton Counter capable of sizing small zooplankton. Deep-Sea Res, 39:395-415.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部