期刊文献+

标的资产服从NIG-Levy过程的亚式期权数值定价分析 被引量:2

Numerical Pricing Asian Option on Stocks Driven by the NIG-Levy Process
原文传递
导出
摘要 考虑到金融时间序列的厚尾性即呈现尖峰厚尾分布,波动率具有聚集性和持续性等特点,也即标的资产的价格可能会出现间断的跳跃,我们展示了在标的资产价格对数收益服从NIG-Levy过程的条件下,如何构建和计算等价鞅测度,我们考虑通过Esscher转换得到Q等价鞅测度,并以此为基础寻找风险中性概率的条件,最后利用这些条件探讨亚式期权的数值定价问题,利用低差异序列中的Halton、Sobol、Faure序列对亚式期权进行了数值定价分析. Mostly, the return series of financial assets are fat tails distribution and the volatility appears the characteristics of the congregating and durative, In this study, we show that how to construct and compute equivalent martingale measures on stocks driven by the NIG-Levy process, we can get equivalent martingale measures by Esscher transform methods, and find the risk-neutral probability measure' condition, Finally, we consider numerical pricing analysis of Asian options by uses low discrepancy Sequences (Halton, Sobol Sequences).
作者 罗付岩 贾贞
出处 《数学的实践与认识》 CSCD 北大核心 2008年第15期75-80,共6页 Mathematics in Practice and Theory
基金 国家自然科学基金资助(10661006) 广西壮族自治区教育厅项目资助(20062695)
关键词 正态逆高斯分布 Esseher转换 等价鞅测度 拟Monte CARLO模拟 Normal inverse Gaussian distribution Esscher transform Equivalent MartingaleMeasure quasi-Monte Carlo simulation
  • 相关文献

参考文献8

  • 1Rama C, Tankov P. Financial Modelling with Jump Processes[M]. Capman & Hall/CRC, Boca Roton, FL,2004.
  • 2Schautens W. Levy processes in finance[J]. John Wiley & Sons, Chichester,2003. 111-113.
  • 3Terence C. Pricing contingent claim on stocks driven by levy processes[J]. Ann Appl Probab, 1999,9 (2) : 504-528.
  • 4Benth F E, Groth M. Kettler P C. A Quasi-monte Carlo Algorithm for Normal Inverse Gaussian Distribution and Valuation of Financial Derivatives [R]. Working Paper, Center of Mathematics for Applications, Department of Mathematics, University of Oslo, 2005.
  • 5Gerber H, Shiu E. Option pricing by esscher transform[J]. Transaction of the Society of Actuaries,1994,46:99- 191.
  • 6Rasmus S, Asmussen S, Wiktorsson M. Pricing of some Exotic Options with NIG-Levy input[M]. Computational Science ICCS, 2004.
  • 7Karlis D. An EM-type algorithm for maximum likelihood estimation of the normal inverse Gaussian distribution[J]. Statistics & Probability,2002.43-52.
  • 8Paul Glasserman. Monte carlo methods in financial engineering[J]. Springer,2003. 281-339.

同被引文献27

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部