期刊文献+

红细胞蛋白激酶C活性变化对锚蛋白的影响 被引量:1

Effects of Protein Kinase C on Ankyrin in Erythrocytes
下载PDF
导出
摘要 目的本研究探讨红细胞蛋白激酶C(PKC)活性变化对锚蛋白的影响。方法采用γ-P32标记和免疫沉淀法检测锚蛋白磷酸化情况;采用间接免疫荧光标记方法观察PKC和锚蛋白的细胞内分布情况;利用红细胞变形仪测定红细胞的变形能力;测量红细胞衍射斑的长短轴之比表示红细胞变形指数。结果PKC激活剂佛波酯(PMA)处理实验组红细胞1min、5min、10min、30min、1h、2h,PMA处理后即刻发生锚蛋白的磷酸化、PKC和锚蛋白细胞内同步移位及共分布现象,磷酸化高峰值和发生这种分布改变的红细胞百分率于30min达最高。PMA处理的红细胞在不同切应力(50,100,200,300N/m2)下,其变形指数都于30min达最大;不同切应力下的变形指数都与发生PKC和锚蛋白细胞内同步移位的细胞百分率显著负相关。结论红细胞PKC活化后可以对锚蛋白进行磷酸化,并引起锚蛋白和PKC发生细胞内同步移位和共分布,这可能是造成红细胞变形性发生改变的新机制。 Objective To study the effects of protein kinase C (PKC)on ankyrin in erythrocytes. Methods Phosphorylation of ankyrin was detected by γ-P^32 marking and immunoprecipitation, and cellular distribution of PKC and ankyrin was observed by indirect immunofluorescence. Erythrocyte deformability was measured by erythrocyte deformation meter,and erythrocyte deformation index(DI ) was calculated by the ratio between long axis and short axis of erythrocyte diffractive spot. Results Erythrocytes in test group were treated with Phorbol-12-myrisrate- 13-acetate (PMA), a PKC activator, for 1 minutes, 5 minutes, 10 minutes, 30 minutes, 1 hour and 2 hours, respectively. The phosphorylafion of ankyrin, synchronous migration and co-localization of PKC and ankyrin occurred instantly after PMA treatment and reached to the high peak at 30 min. DI increased to the highest value at 30 min under various shear suesses (50,100,200,300 N/m^2). Moreover,DI was negatively correlative significantly with the pereentage of cellular migration of PKC and ankyrin in erythrocytes under various shear stresses. Conclusion PKC can phosphorylate ankyrin and therefore lead to the cellular migration and co-localization of ankyrin along with PKC after PKA activation, which may be the new mechanism of erythrocyte deformation decrease.
出处 《中国医科大学学报》 CAS CSCD 北大核心 2008年第4期485-488,共4页 Journal of China Medical University
基金 辽宁省教育厅科研基金资助项目(05L515)
关键词 红细胞 蛋白激酶C 锚蛋白 变形性 erythrocyte protein kinase C ankyrin deformation
  • 相关文献

参考文献8

  • 1BARKALOW KL, ITALIANO JE Jr, CHOU DE,et al. Alpha-adducin dissociates from F-aetin and spectrin during platelet activation [J].J cell Biol,2003,161(3 ) :557-570.
  • 2HWANG KY, LEE BK, BRESSLER JP,et al. Protein kinase C activity and the relations between blood lead and neurobehavioral function in lead workers [J]. Environ Health Perspeet,2002,110 (2) : 133- 138.
  • 3KALOMIRIS EL, BOURGUIGNON LY. Lymphoma protein kinase C is associated with the transmembrane glycoprotein,GP85,and may function in GP85-ankyrin binding [J]. J Biol Chem, 1989,264(14) : 8113-8119.
  • 4郝一文,程大也,李亚明.蛋白激酶C对血管内皮细胞锚蛋白、CD44表达及亚细胞分布的影响[J].细胞生物学杂志,2006,28(3):457-462. 被引量:1
  • 5CHANG SH,LOW PS. Regulation of the glyeophorin C-protein 4.1 membrane-to-skeleton bridge and evaluation of its contribution to erythroeyte membrane stability [J].J Biol Chem,2001,276 (25) : 22223-22230.
  • 6BATMKOVA MA,BETIN VL,RUBOTSOV AM,et al. Ankyrin: structure,properties and functions [J]. Biochemistry (Mosc), 2000,65 (4) : 395-408.
  • 7LOKESWHAR YB,FREGIEN N,BOURGUIGNON LY. Ankyrin binding domain of CD44 (GP85)is required for the expression of hyaluronic acid-mediated adhesion function [J].J Cell Biol, 1994,126(4) : 1099-1109.
  • 8NAGARAJ K,HORTSCH M. Phosphorylation of Ll-type cell- adhesion molecules-ankyrins away! [J].Trends Biochem Sci, 2006,31(10) :544-546.

二级参考文献11

  • 1Zhuo D et al. Cell Motil Cytoskeleton, 1998, 39:209
  • 2Muro S et al. J Cell Sci, 2003, 116:1599
  • 3Rahman A et al. Am J Physiol Cell Physiol, 2000, 279: C906
  • 4Heider KH et al. J Cell Biol, 1993, 120:227
  • 5Takai Y et al. J Biol Chem, 1979, 254:3692
  • 6Lokeshwar VB et al. J Biol Chem, 1992, 267: 22073
  • 7Singleton PA et al. Exp Cell Res, 2004, 295:102
  • 8Bourguignon LY et al. J Cell Physiol, 1998, 176:206
  • 9Lahn M et al. Oncology, 2004, 67:1
  • 10Rahman A et al. Mol Cell Biol, 2001, 21:5554

同被引文献20

  • 1King N. The unicellular ancestry of animal development. Dev Cell 2004; 7(3): 313-25.
  • 2Baines AJ. Evolution of the spectrin-based membrane skeleton. Transfus Clin Biol 2010; 17(3): 95-103.
  • 3Snyder GK, Brandon A. Sheafor. Red blood cells: Centerpiece in the evolution of the vertebrate circulatory system. Amer Zool 1999; 39: 189-98.
  • 4Chang SH, Low PS. Regulation of the glycophorin C-protein 4.1 membrane-to-skeleton bridge and evaluation of its contribution to erythrocyte membrane stability. J Biol Chem 2001; 276(25): 22223-30.
  • 5Sumie M, Yuichi T, Kaoru N, Narla M. Modulation of erythrocyte membrane mechanical function by 13-spectiin phosphorylation and dephosphorylation. J Biol Chem 1995; 270(10): 5659-65.
  • 6Sumie M, Yuiehi T, Narla M. Modulation of erythrocyte mem- brane mechanical function by protein 4.1 phosphorylation. J Biol Chem 2005; 280(9): 7581-7.
  • 7Antonella P, Emanuela F, Franco C, Franca M, Giuliana G, Rosa V, et al. Analysis of changes in tyrosine and serine phosphory- lation of red cell membrane proteins induced by P. falciparum growth. J Proteomics 2010; 10(6): 3469-79.
  • 8Ricky W, Dennis D, Clare K. Evolutionarily conserved alterna- tive pre-mRNA splicing regulates structure and function of the spectrin-actin binding domain of erythroid Protein 4.1. Blood 1995; 86(11): 4315-22.
  • 9Meihua L, Zhen D, Zhanqua Y. Protein kinase C in proliferation and infiltration of eosinophils in nasal polyp. Chinese Medical Journal 2003; 116(10): 1553-6.
  • 10Antonella P, Lucia DF, Emanuela F, Rosa V, Franco T. Current knowledge about the functional roles of phosphorylative changes of membrane proteins in normal and diseased red cells. J Pro- teomics 2010; 73(5): 445-55.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部