期刊文献+

奇异二阶微分系统离散边值问题

Discrete Boundary Value Problems of Singular Second Order Differential Systems
下载PDF
导出
摘要 利用锥不动点定理给出了奇异离散边值问题{Δ2x(i-1)+q1(i)f1(i,x(i),y(i))=0,i∈{1,2,…,T}Δ2y(i-1)+q2(i)f2(i,x(i),y(i))=0,x(0)=x(T+1)=y(0)=y(T+1)=0,的正解的存在性,其中非线性项fk(i,x,y)在(x,y)=(0,0)点奇异,k=1,2. In this paper we investigates the existence of positive solutions to the singular discrete boundary value problem △^2x(i-1)+q1(i)f1(i,x(i),y(i))= 0,i∈{1,2 …,T},△^2y(i-1)+q2(i)f2(i,x(i),y(i))=0,x(0)=x(T+1)=y(0)=y(T+1)=0, by using cone fixed point theorem, where nonlinear term fk(i,x,y) is singular at (x,y) = (0,0),k=1,2.
出处 《新疆大学学报(自然科学版)》 CAS 2008年第3期286-292,共7页 Journal of Xinjiang University(Natural Science Edition)
基金 国家自然科学基金资助项目(10571021)
关键词 正解 奇异 存在性 离散边值问题 锥不动点定理 Positive solutions singularity existence discrete boundary value problem fixed point theorem in cones
  • 相关文献

参考文献7

  • 1Agarwal R P, O'Regan D. Nonlinear superlinear singular and nonsingular second order boundary value problems[J]. Appl Math Letters, 1999, 12:127-131.
  • 2Agarwal R P, O'Regan D. Twin solutions to singular Dirichlet problems[J].J Math Anal Appl, 1999, 240:433-445.
  • 3Agarwal R P, O'Regan D. Existence theorem for Nonlinear Ordinary Differential Equations[M]. Dordrecht, Kluwer, 1997,36-38.
  • 4Jiang DaQing. Multiple positive solutions to singular boundary value problems for superlinear higher-order ODEs[J].Computers and Mathematics with Applications, 2000,40:249-259.
  • 5Agarwal R P, O'Regan D. Nonpositive discrete boundary value problems[J]. Nonlinear Analysis, 2000, 39:207-215.
  • 6Jiang DaQing,Zhang LiLi,O'Regan D, Agarwal R P. Existence the ory for single and multiple solutions to singular positone discrete Dirichlet boundary value problems to the one-dimension p-Laplacian[J].Archivum Mathematicum Tomus, 2001,40: 367-381.
  • 7Xu Xiaojie, Jiang Daqing. Twin positive solutions to singular boundary value problems of second order differential systems[J].J Pure Appl Math, 2003, 34:85-99.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部