摘要
利用锥不动点定理给出了奇异离散边值问题{Δ2x(i-1)+q1(i)f1(i,x(i),y(i))=0,i∈{1,2,…,T}Δ2y(i-1)+q2(i)f2(i,x(i),y(i))=0,x(0)=x(T+1)=y(0)=y(T+1)=0,的正解的存在性,其中非线性项fk(i,x,y)在(x,y)=(0,0)点奇异,k=1,2.
In this paper we investigates the existence of positive solutions to the singular discrete boundary value problem △^2x(i-1)+q1(i)f1(i,x(i),y(i))= 0,i∈{1,2 …,T},△^2y(i-1)+q2(i)f2(i,x(i),y(i))=0,x(0)=x(T+1)=y(0)=y(T+1)=0, by using cone fixed point theorem, where nonlinear term fk(i,x,y) is singular at (x,y) = (0,0),k=1,2.
出处
《新疆大学学报(自然科学版)》
CAS
2008年第3期286-292,共7页
Journal of Xinjiang University(Natural Science Edition)
基金
国家自然科学基金资助项目(10571021)
关键词
正解
奇异
存在性
离散边值问题
锥不动点定理
Positive solutions
singularity
existence
discrete boundary value problem
fixed point theorem in cones