期刊文献+

基于支持向量机的发动机磨损故障识别 被引量:2

Wear Faults Recognition of Self-propelled Gun Engine Based on Support Vector Machine
下载PDF
导出
摘要 针对发动机磨损故障识别问题,利用支持向量机(Support Vector Machine,SVM)的小样本训练学习的优势,建立基于SVM的发动机磨损故障识别方法,有效解决了困扰发动机油液分析故障诊断中小样本识别问题,为发动机故障诊断提供了一种新的途径。 In the wear fault diagnosis of engine, spectrometric oil analysis is so effective a diagnosis tool that we can obtain the concentration of about 20 elements. However, due to the limited number of the oil samples, it is difficult to build an effective mode recognition method. Then in this paper, we use SVM to set up a mode recognition method based on SVM and detect the wear faults in the engine. The results prove that the method can recognize the fault states from the normal states.
出处 《内燃机》 2008年第4期34-37,共4页 Internal Combustion Engines
关键词 发动机 支持向量机 故障诊断 状态识别 油液光谱分析 engine SVM faultdiagnosis state recognition spectrometric oil analysis
  • 相关文献

参考文献5

  • 1沈寿林.基于多传感器信息融合的自行火炮发动机故障诊断研究[D].石家庄:军械工程学院,2001:3-6.
  • 2Chapelle O, Vapnik V, Bacsquest O, et al. Choosing multiple parameters for support vector machine. Machine Learning 2002, 46(1): 131-159
  • 3Burges C J C. A tutorial on support vector machines for pattern recognition [J]. Data Mining and Knowledge Discovery, 1998, 2(2):121-167.
  • 4N.Gupta,R.Dahmani.AOTF Raman Spectrometer for Remote Detection of Explosives,Spectrochimica Acta A 58,2000 : 1 453-1 456.
  • 5R.Dahmani,N.Gupta.Speetroseopie analysis of automotive engine oil.Insttumentation for Air Pollution and Global Atmospherie Monitoring, 2001, Newton, USA : 179-183.

同被引文献23

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部