期刊文献+

利用最大似然准则的双向联想网络研究

Bidirectional Associative Memory Utilizing Maximum Likelihood
下载PDF
导出
摘要 针对现有双向联想网络(BAM)存在的存储容量小、抗干扰能力弱的缺点,提出了一种利用最大似然准则的BAM网络(MLBAM)及其训练算法.MLBAM网络采用双向网络结构建立了神经元的发放以及抑制模型,充分利用似然函数的特性以及网络的双向联想特性,很好地完成了自联想和异联想功能,并且准确计算出关联样本对之间的关联度,使MLBAM网络在随机环境中具有很强的抗噪能力.利用最速下降算法,给出了MLBAM网络的训练算法,根据训练权重的Hessian矩阵负定,判定算法能够获得全局最优解,从而证明了算法的收敛性.该训练算法能够训练出最优的连接权重和神经元阈值.通过2个典型实验验证了MLBAM网络的抗噪能力和联想能力,在存在1位随机噪声的情况下,该网络的联想正确率达到了100%. A new learning rule and theoretical analysis of an extended bidirectional associative memory network (MLBAM) are presented by using the maximum likelihood criterion based on two well recognized and essential criteria, i. e. , the convergence of the learning rule, and the noise tolerance of the network. Traditional methods fail to distinguish highly closing patterns. However, this disadvantage is improved by using the newly developed method, since the maxi- mum likelihood method is used to seek the best possible closing mapping of two patterns. Experiments are made to verify the validity and efficiency of the proposed method. The method displays excellent anti-noise property and MLBAM network exhibits association at a 100% accuracy under one-bit inversion which implies that 100% of the one-bit errors is corrected.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2008年第8期963-966,1043,共5页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(60475023) 教育部博士学科点专项基金资助项目(20050698023)
关键词 双向联想 最大似然准则 自联想 异联想 bidirectional associative memory maximum likelihood criterion auto-association hetero-association
  • 相关文献

参考文献8

  • 1HECHT-NIELSEN R. Neurocomputing [M]. Reading, Berkshire, UK: Addison Wesley Publishing Company, 1991.
  • 2KOSKO B. Adaptive bidirectional associative memories [J]. Applied Optics, 1987, 26(23) : 4947-4960.
  • 3KOSKO B. Bidirectional associative memories [J]. IEEE Trans System,Man,and Cybernetics, 1988, 18 (1): 49-60.
  • 4BARBER D, AGAKOV F. Correlated sequence learning in a network of spiking neurons using maximum likelihood, EDI-INF-RR-0149[R]. Edinburgh, Scotland, UK.. University of Edinburgh, School of Informatics, 2002.
  • 5WANG Y F,CRUZ J B Jr. MULLIGAN J H Jr. Two coding strategies for bidirectional associative memory [J]. IEEE Transactions on Neural Networks, 1990, 1(1) :81-91.
  • 6WANG Zhengou. A bidirectional associative memory based on optimal linear associative memory [J]. IEEE Trans on Computers, 1996, 46(10) : 1171-1179.
  • 7YUKIO K. Functional representation of recalling process and memory capacity in associative memory [C]//IEEE-INNS-ENNS International Joint Conference on Neural Networks. Piscataway, NJ, USA: IEEE, 2000: 625-632.
  • 8CHARTIER S, BOUKADOUM M. A bidirectional heteroassociative memory for binary and grey-level patterns[J]. IEEE Transactions on Neural Networks, 2006, 17(2):385-396.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部