期刊文献+

铝衬底微等离子体阵列的制作与光电特性测量 被引量:1

Microplasma Arrays Fabricated in Aluminum Substrate and Its Photoelectric Characteristics
下载PDF
导出
摘要 在铝衬底上采用光刻工艺制作了带有氧化铟锡(ITO)透明电极的微等离子体阵列,实验研究了该微等离子体阵列在30~100kPa氖气中的放电特性和发光特性.不同微腔尺寸的微等离子体阵列实验结果表明.对于微腔直径为150μm的器件,击穿电压随着工作气压的升高先下降后上升,并且在53.2kPa时达到最小值212V.通过对微腔直径为50μm和30μm器件的击穿电压比较发现,在气压较低时,微腔尺寸大的器件更容易击穿,当气压较高时,微腔尺寸小的器件更容易击穿,并且微腔尺寸小的器件随着气压的升高击穿电压下降得更快.与目前商业等离子体显示器件(PDP)的击穿电压相比,微腔器件的击穿电压更低,而且在高气压下,采用更小的微腔作为PDP的显示单元,可以提高PDP的分辨率. Microplasma arrays are fabricated in aluminum substrate with indium tin oxides (ITO) electrode. The discharge characteristics and light emission of the devices at atmospheric pressure in neon are investigated experimentally. The experiment results for microplasma devices with different microcavity diameters show that the breakdown voltage of the microplasma device with 150 μm microcavity diameter reduces firstly and then increases as the operation pressure increases, and reaches the minimum value 212 V at 53.2 kPa. Devices with large microcavity diameters are easy to breakdown at low pressures. The breakdown voltage of the device with small microcavity diameter goes down quickly as the operation pressure increases. The breakdown voltage of microcavity is lower than the breakdown voltage of commercial plasma display panel (PDP). Using small microeavity as pixel of PDP can improve the resolution of PDP at high atmospheric pressure.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2008年第8期982-985,共4页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金重点资助项目(50637010)
关键词 微等离子体阵列 微腔放电 铝衬底 击穿电压 microplasma array microcavity discharge aluminum substrate breakdown voltage
  • 相关文献

参考文献10

  • 1胡文波,周俊峰,武文璞.彩色等离子体显示屏新型Ne-Xe-Kr混合气体的研究[J].西安交通大学学报,2004,38(8):843-846. 被引量:1
  • 2何锋,李永东,郭俊利,刘纯亮.交流等离子体显示板寻址和维持放电的二维流体模拟[J].西安交通大学学报,2002,36(8):855-858. 被引量:3
  • 3梁志虎,刘纯亮,杜春艳,魏巍.一种新的交流等离子体显示器等效电路模型[J].西安交通大学学报,2003,37(10):1067-1070. 被引量:3
  • 4BECKER K H, SCHOENBACH K H, EDEN J G. Microplasmas and applications [J]. J Phys D: Appl Phys, 2006, 39(3). R55-R70.
  • 5EDEN J G, PARK S J, OSTROM N P, et al. Large arrays of microcavity plasma devices for active displays and backlighting [J]. Journal of Display Technology, 2005, 1(1): 112-117.
  • 6PARK S J, CHEN K F, SUNG S H, et al. Implications of microcavity plasma devices for new plasmadisplay-panel cell structures with improved luminosity [J]. Journal of the SID, 2005, 13(11): 949-954.
  • 7FRAME J W, WHEELER D J, de TEMPLE T A, et al. Microdischarge devices fabricated in silicon [J]. Appl Phys Lett, 1997, 71(9): 1165-1167.
  • 8CHEN K F, OSTROM N P, PARK S J, et al. One quarter million (500×500) pixel arrays of silicon microcavity plasma devices: luminous efficacy above 6 lumens/watt with Ne/50% Xe mixtures and a green phosphor [J]. Appl Phys Lett, 2006, 88(06) : 1121- 1123.
  • 9PARK S J, TCHERTCHIAN P A, SUNG S H, et al. Arrays of addressable microcavity plasma devices [J]. IEEE Transactions on Plasma Science, 2007, 35 (2) : 215-222.
  • 10商世广,朱长纯.直流磁控溅射氧化铟锡薄膜的低温等离子退火研究[J].西安交通大学学报,2007,41(2):236-240. 被引量:4

二级参考文献20

  • 1[1]Veerasingam R, Campbell R B, McGrath R T. One-dimensional fliud and circuit simulation of an AC-plasma display cell [J]. IEEE Trans Plasma Sci, 1995, 23(4): 688~697.
  • 2[2]Campbell R B, Veerasingam R, McGrath R T. A two-dimensional multispecies fluid model of the plasma in an AC plasma display panel [J]. IEEE Trans Plasma Sci, 1995, 23(4): 698~708.
  • 3[3]Punset C, Boeuf J P, Pitchford L C. Two-dimensional simulation of an alternating current matrix plasma display cell: cross-talk and other geometric effects [J]. J Appl Phys, 1998, 83(4): 1 884~1 897.
  • 4[4]Punset C, Cany S, Boeuf J P. Addressing and sustaining in alternating current coplanar plasma display panels [J]. J Appl Phys, 1999, 86(1): 124~132.
  • 5[5]Schafetter D L, Gummel H K. Large-signal analysis of a silicon read diode osillator [J]. IEEE Transactions on Electron Deviecs, 1969, ED-16(1): 64~77.
  • 6[6]Morgan W L, Boeuf J P, Pitchford L C. User's manual for BOLSIG [EB/OL]. http:∥www.siglo-kinema.com/,1996-12-12/2000-11-20.
  • 7Kim M S, Seo Y W, Kim B G. Method for measuring wall charge and wall voltage on plasma display panel[P]. KR,PCT Patent, WO 01/99139. 2001.
  • 8Sakita K, Takayama K, Awamoto K, et al, High-speed address driving waveform analysis using wall voltage transfer function for three terminals and vt close curve in three-electrode surface-discharge ACPDPs [A]. SID'01 Digest [C]. San Jose, CA. Society for Information Display 2001 International Symposium, 2001. 1 022-1 025.
  • 9Kim H, Jeong J, Kang K, et al. Voltage domain analysis and wall voltage measurement {or surface-discharge type AC-PDP [A-]. SID' 01 Digest [C]. San Jose, CA: Society for Information Display 2001 Intermational Symposium, 2001. 1 026-1 029.
  • 10Kyung C C, Hyoung J C. Improved luminance and luminous efficiency of AC plasma display panel [J]. IEEE Trans on Consumer Electronics, 2003, 49 (2): 253-256.

共引文献7

同被引文献12

  • 1彭国贤.彩色PDP显示电极的制造工艺[J].真空电子技术,2005,18(1):28-33. 被引量:1
  • 2Boeuf J P. Plasma Display Panels: Physics, Recent Develop- ments and Key Issues [ J]. Phys D: Appl Phys, 2003,36(6): 53 - 79.
  • 3Victor B,Kreng,Hsi Tse Wang. The Interaction of the Market Competition between LCD TV and PDP TV [J]. Computers & Industrial Engineering, 2009,57 : 1210 - 1217.
  • 4Chae S, Heo E, Kim C, et al. Paste for Forming an Electrode of Plasma Display Panel (PDP), Includes Aluminum Solution which Contains Aluminum Particles and Surface Treatment A- gent [ P ]. US: 2010001640-A1, EP: 2144270-A2, JP: 2010015992-A, CN: 101625949-A, KR: 2010005694-A, 2010- 01.
  • 5Cho J H, Kim H D, Kim Y H, et al. Composition for Forming Electrode for Plasma Display Panel, Contains Conductive Filler Including Muminum Powder and Silver Powder with Di- ameter of Specified Range, Organic Binder and Solvent in Specified Amounts [ P]. KR: 2009048287-A, 2009-05.
  • 6Onishi R, Minami T, Goto M, et al. Electrode Used for Display Devices Such as Plasma Display Panel, has Aluminum Thin Film Electrically Connected with Transparent Electrode Formed on Subs/rate, and Ctu'omium Film Formed on Alu- minum Thin Film [ P]. JP: 2008226494-A, 2008-09.
  • 7Kwak Dong-Joo, Park Min-Woo, Sung Youl-Moon. Discharge Power Dependence of Structural and Electrical Properties of A1-Doped ZnO Conducting Film by Magnetron Sputtering (for PDP)[J].Vacuum,2009,83:113 - 118.
  • 8KIM J S,KIM K K,RYU B G,et al. Mefllod for Forming Di- electric Layer of PDP Panel Using Nozzle Capable of Reduc- ing Manufacturing Cost of Micro-Lens Type Dielectric Layer [ P ]. KR: 2007042012- A, 2007-04.
  • 9黄秋铭,张雄,樊兆雯,等.利用电泳法制备等离子体显示板介质层的方法[P].China:101286431,2008-10.
  • 10Sangwook Lee, Mikyung Park, Seongjin Hwang, et al. Shape Change of Ag Electrode with Shrinkage Difference between Electrode and Dielectric in PDP [ J]. Displays, 2008,29: 345 - 350.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部