期刊文献+

基于拉格朗日对偶的一类全局优化算法 被引量:1

Global Optimization Algorithm Based on Lagrangian Dual
下载PDF
导出
摘要 针对带有非凸二次函数约束的非凸二次规划问题(NQP),提出了一个基于拉格朗日对偶的确定型全局优化算法,这类优化算法可广泛应用于工程设计和非线性系统的鲁棒稳定性分析等实际问题中.为求解此问题,首先,应用拉格朗日对偶对原问题进行下界估计.其次,为克服拉格朗日对偶问题的非凸性,利用线性化方法,得到拉格朗日对偶问题的线性下界估计,并且由此建立了NQP拉格朗日对偶问题的松弛线性规划(RLP).如此通过对RLP可行域的细分和一系列RLP的求解过程,从理论上证明了算法收敛到NQP的全局最优解.数值算例应用结果表明,该方法是可行的. A deterministic global optimization algorithm based on Lagrangian dual is proposed for solving the nonconvex quadratic programming with nonconvex quadratic constraints, which is often encountered in technical design and operational research. By utilizing a linearized method the difficulty that the Lagrangian dual problem is nonconvex is solved and the linearization relaxation of the Lagrangian is obtained. The proposed branch and bound algorithms are convergent to the global minimum via successive refinement of the linear relaxation of the Lagrangian dual problem and the solutions to a series of the relaxation of linear programming. Interval Newton method is used to accelerate the convergence of the algorithm. Numerical experiments are given to verify the feasibility of the proposed algorithm.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2008年第8期1031-1034,共4页 Journal of Xi'an Jiaotong University
关键词 工程设计 非凸二次规划问题 拉格朗日对偶 全局优化 technical design nonconvex quadratic programming Lagrangian dual global optimization
  • 相关文献

参考文献10

  • 1KHAMMASH M H. Synthesis of globally optimal controllers for robust performance to unstructured uncertainty[J]. IEEE Transactions on Automatic Control,1996, 41(2):189-198.
  • 2SALAPAKA M V, KHAMMASH M H, VOORHIS T V. Synthesis of globally optimal controllers in h using the reformulation-iinearization technique [C] // Proceedings of the IEEE Conference on Decision and Control. Piscataway, NJ, USA: IEEE, 1998.
  • 3LODWICK W A. Preprocessing nonlinear functional constraints with applications to the pooling problem [J]. ORSA Journal on Computing, 1992, 4 (1) : 119- 131.
  • 4FLOUDAS C A, VISWESWARAN V. Primal-relaxed dual global optimization approach[J]. Journal of Optimization Theory and Applications, 1993, 78 : 187-225.
  • 5QU S J, YIN H Y, ZHANG K C. A global optimization algorithm using linear relaxation [J ]. Applied Mathematics and Computation, 2006,178: 510-518.
  • 6VOORHIS T V. A global optimization algorithm using Lagrangian underestimates and the interval Newton method[J]. Journal of Global Optimization, 2002,24:349-370.
  • 7PARDLOS P M, ROSEN J B. Constrained global op timization: algorithms and applications [M]. Berlin, Germany: Springer-Verlag, 1987.
  • 8AN L T H. An efficient algorithm for globally minimizing a quadratic function under convex quadratic con straints[J]. Math Program: Ser A, 2000, 87(12):401 -426.
  • 9KEARFOTT R B. Rigorous global seareh: continuous problems, nonconvex optimization and its applications [M]. Dordrecht, Holland: Kluwer Academic Publishers, 1996.
  • 10MARANAS C D. FI,OUDAS C A. Global optimization in generalized geometric programming[J]. Computers and Chemical Engineering, 1997, 21 (4): 351-369.

同被引文献16

  • 1Hong Zhou. Solving fractional problems management based on a deterministic algorithm [ C ]//2009 IITA International Conference on Control, Automation and Systems Engineering. Zhangjiajie : IEEE ,2009 : 163-166.
  • 2Lim Youdong, Stadtherr Mark A. Deterministic global opti- mization for dynamic systems using interval analysis [ C ] // 2006 12th GAMM-IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics. Duisburg:IEEE Computre Society ,2007:323-331.
  • 3Zhang Xiaowei, Liu Sanyang. Interval algorithm for global numerical optimization [ J ]. Engineering Optimization, 2008,40 (9) : 849- 868.
  • 4Sun M ,Johnson A W. Interval branch and bound with local sampling for constrained global optimization [ J ]. Journal of Global Optimization ,2005,33 ( 1 ) :62-82.
  • 5Issam Mazhoud, Khaled Hadj-Hamou, Jean Bigeon, et al. Interval-based global optitrLization in engineering using model reformulation and constraint propagation [ J ]. Engineering Applications of Artificial Intelligence, 2012, 25(2) :404-417.
  • 6Luiz I-Ienrique de Figueircdo, Jorge Stolfi. Affine arithmetic : concepts and applications [ J ]. Numerical Algorithms, 2004,37 ( 1/2/3/4 ) : 147-158.
  • 7Jorge Stolfi, Luiz Henriqu,~de Figueiredo. Self-validated numerical methods and applications [ C ] //21 st Brazilian Mathematics Colloquium. Rio de Janeiro : IMPA, 1997.
  • 8Tsang P W M, Yuen T Y F, Situ W C. Enhanced affine invariant matching of broken boundaries based on particle swarm optimization and the dynamic migrant principle [ J]. Applied Soft Computing Journal ,2010,10 ( 2 ) : 432-438.
  • 9Wolfe M A. Interval methods for global optimization [ J ]. Applied Mathematics and Computation, 1996,75 (2/3) : 179-206.
  • 10Hansen E. Global optimization multidimensional case [ J ]. 1980,34( 1 ) :247-270.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部