期刊文献+

内部演化网络分析

Analysis of inner evolving networks
下载PDF
导出
摘要 分析了Barabasi-Albert(BA)无标度网络内部演化加边对网络结构的影响,考虑了线性和非线性择优连接.基于扩展的率方程方法,考虑引入新节点和内部加边引起的网络中已有节点的度的变化率,得到了度分布的精确表达式.当择优连接为线性时,度分布服从幂律;对于亚线性择优连接,度分布呈拉伸的指数分布形式.对于超线性择优连接,边的两端都择优连接会出现几乎与网络中其他所有节点都相连的"凝胶"节点. The effects of inner edge addition on the structure of the Barabasi-Albert (BA)scale-free network are analyzed, with the linear and non-linear preferential attachment. Based on the extended rate equation approach, considering the changing rates of the existing nodes' degrees caused by the addition of new nodes and edges, the exact expressions for the degree distributions are obtained. When the preferential attachment is linear, the degree distributions follow the power-law form. For the sub-linear preferential attachment, the degree distributions follow the form of stretched exponential; for the suplinear preferential attachment, the double-end-point preferential attachment can lead to an extremely low number of "gel" nodes connecting to nearly every other node in the network. The results obtained provide references for further researches on other properties of inner evolving networks.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2008年第4期650-653,共4页 Journal of Xidian University
基金 国家自然科学基金资助项目(70371066 70671079)
关键词 率方程 度分布 内部演化 rate-equation degree distribution inner evolving
  • 相关文献

参考文献12

  • 1Barabasi A L, Albert R. Emergence of Scaling in Random Networks[J]. Science, 1999, 286(10): 509-512.
  • 2Barabasi A L, Albert R,Jeong H. Mean-field Theory for Scale-free Random Networks[J]. Physica A, 1999, 272 (1) : 173-187.
  • 3Dorogovtsev S N, Mendes J F F. Evolution of Networks: from Biological Nets to the Internet and WWW[M].1^st ed. Oxford: Oxford University Press, 2003: 226-227.
  • 4Dorogovtsev S N, Mendes J F F, Samukhin A N. Structure of Growing Networks with Preferential Linking[J]. Phys Rev Lett, 2000, 85(21): 4633-4636.
  • 5Dorogovtsev S N, Mendes J F F. Scaling Behaviour of Developing and Decaying Networks[J].Europhys Lett, 2000, 52 (1):33-39.
  • 6Krapivsky P L, Redner S, Leyvraz F. Connectivity of Growing Random Networks[J].Phys Rev Lett, 2000, 85(21): 4 629-4 632.
  • 7Albert R, Barabasi A L. Topology of Evolving Networks: Local Events and Universality[J]. Phys Rev Lett, 2000, 85 (24): 5 234-5 327.
  • 8陈庆华,史定华.增长网络的形成机理和度分布计算[J].应用数学与计算数学学报,2005,19(1):30-38. 被引量:5
  • 9Ergun G, Rodgers G J. Growing Random Networks with Fitness[J]. Physica A, 2002, 303(1-2): 261-272.
  • 10Newman M E J. Assortative Mixing in Networks[J].Phys Rev Lett, 2002, 89(20): 1-4.

二级参考文献24

  • 1史定华.随机模型的密度演化方法[M].科学出版社,..
  • 2S.N. Dorogovtsev, J.F.F. Mendes, Accelerated growth of networks, condmat/0204102 (2002).
  • 3E. Ravasz, A.-L. Barabasi, Hierarchical organization in complex networks, condmat/0206130(2002).
  • 4Q. Chen (陈庆华), D. Shi (史定华), The modeling of scale-free networks, Physica A 335, 240(2004).
  • 5D. Shi (史定华), Q. Chen (陈庆华), L. Liu (刘黎明), Markov chain-based numerical method for degree distributions of growing networks, Phys. Rev. E, 71(1),036140 (2005).
  • 6S.M. Ross, Stochastic Processes, John Wiley and Sons, Inc. (1983).
  • 7R. Albert, A.-L. Barabasi, Statistical mechanics of complex networks, Rev. Mod. Phys. 74,47 (2002).
  • 8S.H. Strogatz, Exploring complex networks, Nature 410, 268 (2001).
  • 9P. Erdos, A.Renyi, On the evolution of random graphs, Publ. Math. Inst. Hung. Acad. Sci.5, 17 (1960).
  • 10D.J. Watts, S.H. Strogatz, Collective dynamics of small-world networks, Nature 393, 440(1998).

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部