期刊文献+

非参数GKNN估计的高效独立成分分析算法 被引量:1

Efficient non-parametric GKNN independent component analysis algorithm
下载PDF
导出
摘要 基于概率密度非参数估计的广义k-最近邻估计(GKNN)和线性独立成分分析(ICA)神经网络,提出了一种新的ICA非参数算法,实现了对源信号分布的全"盲"要求.传统的ICA算法不能分离一般的包括超高斯、亚高斯和非对称分布的杂系混合信号,因此它们需知道源信号的一些信息.基于GKNN的非参数密度估计直接由观测信号样本出发,实现了对分离信号评价函数的直接估计,从而在一定程度上解决了ICA算法中如何选取估计信号评价函数的难题.所提算法可以只用一种灵活的评价函数分离任意的杂系混合信号,该算法为ICA的更广泛应用铺平了道路.模拟实验从统计性质和计算时间说明了所提算法性能的优越性. The non-parametric density estimation generalized k-nearest neighbor(GKNN) estimation based novel independent component analysis(ICA) algorithm which is fully blind to the sources is proposed using a linear ICA neural network. The proposed GKNN density estimation is directly evaluated from the original data samples, so it solves the important problem in ICA and blind source separation (BSS): how to choose nonlinear functions as the probability density function(PDF) estimation of the sources. Moreover, the GKNN-ICA algorithm can separate the hybrid mixtures of source signals which include Gaussian, super Gaussian, sub-Gaussian, and symmetric distribution ones using only a flexible model and it is completely blind to the sources. The algorithm presented in this paper provides the way for wider applications of ICA methods to real world signal processing. Simulations confirm the effectiveness of the proposed algorithm.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2008年第4期764-768,共5页 Journal of Xidian University
基金 国家自然科学基金资助(60672047) 河南工业大学校青年科研基金资助(06XJC032)
关键词 盲源分离 独立成分分析 非参数估计 广义k-最近邻估计 blind source separation independent component analysis nonparametric estimation generalized k nearest neighbor
  • 相关文献

参考文献11

  • 1张军英,刘利平.基于部分独立分量分析的盲源分离[J].西安电子科技大学学报,2004,31(3):334-337. 被引量:3
  • 2Bell A, Sejnowski T. An Information Maximization Approach to Blind Separation and Blind Deconvolution[J]. Neural Computation, 1995, 7(6): 1 129-1 159.
  • 3Amari S. Natural Gradient Works Efficiently in Learning[J].Neural Computation, 1998, 10(1): 251-276.
  • 4Cardoso J F. High-order Contrasts for Independent Component Analysis[J]. Neural Computation, 1999, 11 (1): 157-192.
  • 5张贤达,朱孝龙,保铮.Grading learning for blind source separation[J].Science in China(Series F),2003,46(1):31-44. 被引量:14
  • 6Wang F S, Li H W, Li R, et al. Novel Algorithm for Independent Component Analysis with Flexible Score Functions [C]//Proc of 7th Int Conf Signal Processing Proceedings. Beijing, China: IEEE Press, 2004: 132-135.
  • 7Hyvarinen A, Oja E. A Fast Fixed-point Algorithm for Independent Component Analysis[J]. Neural Computation, 1998, 9(8): 1483-1492.
  • 8Karvanen J, Koivunen V. Blind Separation Methods Based on Pearson System and Its Extensions[J]. Signal Processing, 2002, 82(4):663-673.
  • 9Silverman B W. Density Estimation for Statistics and Data Analysis[M]. New York: Chapman and Hall, 1985.
  • 10Bach F R, Jordan M I. Kernel Independent Component Analysis[J]. Journel of Machine Learning Research, 2002, 3 (1) : 1-48.

二级参考文献37

  • 1[1]Hyvarinen, A., Fast and robust fixed-point algorithms for independent component analysis, IEEE Trans. Neural Networks,1999, 10(3): 626-634.
  • 2[2]Giannakopoulos, V., Comparison of adaptive independent component analysis algorithms, Available at http://www.cis.hut. fi/~xgiannak/.
  • 3[3]Bell, A. J., Sejnowski, T. J., An information-maximization approach to blind separation and blind deconvolution, Neural Computations, 1995, 7:1129-1159.
  • 4[4]Karhunen, J., Joutsensalo, J., Representation and separation of signals using nonlinear PCA type learning, Neural Net works, 1994, 7: 113-127.
  • 5[5]Karhunen, J., Pajunen, P., Oja, E., The nonlinear PCA criterion in blind source separation: Relations with other approaches, Neural Computing, 1998, 22: 5-20.
  • 6[6]Comon, P., Independent component analysis, a new concept? Signal Processing, 1994, 36:287-314.
  • 7[7]Pham, D. T., Blind separation of instantaneous mixtures of sources via an independent component analysis, IEEE Trans. Signal Processing, 1996, 44: 2768-2779.
  • 8[8]Cardoso, J. F., Laheld, B., Equivariant adaptive source separation, IEEE Trans. Signal Processing, 1996, 44: 3017-3030.
  • 9[9]Yang, H. H., Amari, S., Adaptive on-line learning algorithms for blind separation-maximum entropy and minimum mu tual information, Neural Computations, 1997, 9:1457-1482.
  • 10[10]Yang, H. H., Serial updating rule for blind separation derived from the method of scoring, IEEE Trans. Signal Processing, 1999, 47: 2279-2285.

共引文献15

同被引文献18

  • 1Cardoso J F. Blind signal separation., statistical principles [J]. Proceeding of the IEEE, 1998, 86 (10) :2009-2025.
  • 2Hyvarinen A, Karhunen J, Oja E. Independent com-ponent analysis[M]. New York: John Wiley and Sons Ltd, 2001 : 1-15.
  • 3Yang H H, Amari S I. Adaptive on-line learning algorithms for blind separation-maximum entropy and minimum mutual information[J]. Neural Computation, 1997,9(5) : 1457-1482.
  • 4Amari S I. Natural gradient works efficiently in learning[J]. Neural Computation, 1998, 10(2) : 251- 276.
  • 5Squartini S, Arcangeli A, Piazza F. Stability analysis of natural gradient learning rules in overdeter mined ICA[J]. Signal Processing,2008, 88(3) : 761- 766.
  • 6Douglas S C, Gupta M. Scaled natural gradient algorithms for instantaneous and convolutive blind source separation [C]//2007 IEEE International Conference on Acoustics, Speech and Signal Process- ing (ICASSP' 07). New york: IEEE Press, 2007: 637-640.
  • 7冶继民.信源数目未知与动态变化时的盲信号分离方法研究[D].西安:西安电子科技大学通信工程学院,2005:16-28.
  • 8Zhang Xianda, Zhu Xiaolong, Bao Zheng. Grading learning for blind source separation [J]. Science in Chian (F series), 2003,46 (1) : 31-44.
  • 9Lou Shuntian, Zhang Xianda. Fuzzy-based learning rate determination for blind source separation [J]. IEEE Transactions on Signal Processing, 2003, 11 (3): 375-383.
  • 10Yuan Lianxi, Wang Wenwu, Chambers J A. Variable step-size sign natural gradient algorithm for se- quential blind source separation [J]. IEEE SignalProcessing Letters,2005, 12 (8) : 589-592.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部