期刊文献+

基于Sugeno补的广义模糊熵阈值分割方法 被引量:10

A Generalized Fuzzy Entropy Thresholding Segmentation Method Based on the Sugeno Complement Operator
下载PDF
导出
摘要 鉴于传统的基于模糊熵的图像阈值分割方法对于光照不均匀图像的分割结果很不理想,该文提出了基于Sugeno补的广义模糊熵图像阈值分割方法。首先按照Sugeno补函数不动点的变化,对一幅图像产生9个阈值,然后利用图像分割质量评价指标对这9个阈值进行评价,最后选择使得评价指标最大的阈值作为最优的阈值。与传统的模糊熵阈值分割方法相比,新方法增加了选择更好的分割结果的机会,对于光照不均匀的图像能够获得比传统模糊熵方法更好的分割效果。 For images with bad illumination, the traditional fuzzy entropy thresholding segmentation method can not achieve satisfactory results. In this paper a generalized fuzzy entropy thresholding method based on the Sugeno complement function is presented. Firstly, nine thresholds are obtained for an image based on the variations of the fixed point in the Sugeno complement function. Secondly, the nine thresholds are evaluated by an image segmentation quality evaluation principle. Finally, the threshold with the maximum quality evaluation value among the nine thresholds is chosen as the optimal threshold. Compared with the traditional fuzzy entropy method new method increases the opportunity of choosing an optimal threshold and obtains better segmentation result for images with bad illumination.
作者 范九伦 赵凤
出处 《电子与信息学报》 EI CSCD 北大核心 2008年第8期1865-1868,共4页 Journal of Electronics & Information Technology
基金 国家自然科学基金(60572133)资助课题
关键词 图像分割 模糊熵 广义模糊熵 补函数 图像质量评价准则 Image segmentation Fuzzy entropy Generalized fuzzy entropy Complement operator function Image quality evaluation principle
  • 相关文献

参考文献14

  • 1范九伦.模糊熵理论[M].第一版,西安:西北大学出版社,1999.9-14.
  • 2De Luca A and Termini S. A definition of a nonprobabilistic entropy in the setting of fuzzy set theory [J]. Information and Control, 1972, 20(4): 301-312.
  • 3Zadeh L A. Fuzzy sets [J]. Information and Control, 1965, 8(3): 338-353.
  • 4Cheng H D, Chen Y H, and Sun Y. A novel fuzzy entropy approach to image enhancement and thresholding [J]. Signal Processing, 1999, 75(3): 277-301.
  • 5Huang L K and Wang M J. Image thresholding by minimizing the measures of fuzziness [J]. Pattern Recognition, 1995, 28(1): 41-51.
  • 6Li X Q, Zhao Z W, and Cheng H D. Fuzzy entropy threshold approach to breast cancer detection [J]. Information Sciences, 1995, 4(1): 49-56.
  • 7Pal S K. A note on the quantitative measure of image enhancement through fuzziness [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1982, 4(2): 204-208.
  • 8Zenzo S D, Cinque L, and Levialdi S. Image thresholding using fuzzy entropies [J]. IEEE Trans. on Systems, Man and Cybernetics-Part B: Cybernetics, 1998, 28(1): 15-23.
  • 9Lowen R. On fuzzy complements [J]. Information Sciences, 1978, 14(2): 107-113.
  • 10Yager R R. On the measures of fuzziness and negation, Part Ⅱ: Lattices [J]. Information and Control, 1980, 44(3): 236-260.

同被引文献159

引证文献10

二级引证文献177

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部