期刊文献+

多传感器自适应滤波融合算法 被引量:15

Multi-Sensor Adaptive Filter Data Fusion Algorithm
下载PDF
导出
摘要 该文提出了一种在线调整权值的多传感器自适应滤波数据融合跟踪算法,用于解决复杂背景下机动目标跟踪问题。首先自适应寻找各个传感器所对应的最优加权因子,确定融合后某一时刻目标最优观测值;其次,以输入信号作为相关自适应滤波器的观测信号,通过新息相关自适应滤波算法根据状态方程及观测方程中误差的变化,实时动态地调整增益矩阵,同时依据自适应滤波状态偏差输出信号及当前观测数据,应用模糊推理在线调整各传感器权值,最终系统输出即为测量轨迹在两级自适应调整融合下最优轨迹。仿真结果证明了算法有效性。 A scheme about multi-sensor data fusion based on adaptive filter is developed for improve tracking precision for moving power-driven target under complicated air-battle environment. At first, optimal weight for sensors are found by measuring data to optimize target point x of anytime. Secondly, the x point is put into adaptive filter as input signal, Plus matrix is adjusted according to change of state noise and observation noise of system at the same time. According to adaptive filter system state noise output and current data, weight for sensors is adjusted on line by using fuzzy logic system. Finally, the output signal is a fusion track that is gained passing through two class self-adapt signal process. The simulation result demonstrates the fusion algorithm is effective,
出处 《电子与信息学报》 EI CSCD 北大核心 2008年第8期1901-1904,共4页 Journal of Electronics & Information Technology
基金 国家自然科学基金重点项目(60634030) 国家留学基金项目(留金出[2005]3069号)资助课题
关键词 目标跟踪 自适应滤波 数据融合 模糊推理 多传感器 Target tracking Self-adapt filter Data fusion Fuzzy logic inference Multi-sensor
  • 相关文献

参考文献8

  • 1Bar-Shalom Y and Fortmann T E. Tracking and Data Association [M]. New York: Academic Press, 1988: 1-35.
  • 2Terwijn B, Porta J M, and Kr o se B J A. A particle filter to estimate non-markovian states [J}. International Conference on Intelligent Autonomous Systems, IAS'04, 2004: 1062-1069.
  • 3胡士强,敬忠良,胡洪涛,田宏伟,李建勋.多传感器稳健融合跟踪算法[J].上海交通大学学报,2005,39(4):509-512. 被引量:16
  • 4Blair W D, Rice T R, and McDole B S. Least-squares approach to a synchronous data fusion [J]. SPIE Acquisition, Tracking, and Pointing Ⅵ, 1992, 1697: 130-139.
  • 5敬忠良,徐宏,周雪琴,戴冠中.基于神经网络的机动目标信息融合与并行自适应跟踪[J].航空学报,1995,16(6):715-719. 被引量:18
  • 6Okuma K, Taleghani A, and Little J. A boosted particle filter: Multi-target detection and tracking. European Conference on Computer Vision (ECCV), 2004: 3255-3261.
  • 7刘兆磊,徐振来,许建峰,张光义.多传感器布局和目标跟踪精度分析[J].火力与指挥控制,2006,31(1):55-58. 被引量:12
  • 8Paul W, James I, and Walter K. Analysis of multi-frame target detection using pixel statistics. IEEE Trans. on AES, 1995, 31(1): 238-246.

二级参考文献16

  • 1Blackman S,Popoli R.Design and Analysis of Modern Tracking Systems[M].Artech House,1999.
  • 2Farina A.Target Tracking with Bearings Only Measurements[J].Signal Processing,1999,78:61-78.
  • 3Dimitris E.Manolakis Efficient Solution and Performance Analysis of 3-D Position Estimation by Trilateration[J].IEEE Trans.on AES,1996,32(4):12391248.
  • 4周宏仁,机动目标跟踪,1991年
  • 5周宏仁,航空学报,1983年,4卷,1期,73页
  • 6BarShalom Y, Li X R. Estimation and tracking[M].New York:Artech House, 1993.
  • 7Blackman S, Popoli R. Design and analysis of modem tracking systems [M]. New York: Artech House, 1999.
  • 8BarShalom Y, Li X R. Estimation with applications to tracking and navigation: theory algorithms and software [M]. New York: John Wiley & Sons,2001.
  • 9Blair W Z, Barshalom Y. Tracking maneuvering targets with multiple sensors: does more data alwaysmean better estimates? [J]. IEEE Trans on Aerospace and Electronic Systems, 1996,32 (1): 450-456.
  • 10Esscamilla P, Mort N. Multi-sensor data fusion architecture based on adaptive Kalman filters and fuzzy logic performance assessment[A]. International Conference on Information Fusion [C]. USA:Annapolis, 2002. 87-93.

共引文献38

同被引文献120

引证文献15

二级引证文献163

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部