期刊文献+

K平面聚类算法的模糊改进及其鲁棒性研究 被引量:2

Improved Fuzzy Partitions for K-Plane Clustering Algorithm and Its Robustness Research
下载PDF
导出
摘要 该文针对K平面聚类算法KPC(K-Plane Clustering)对噪声点敏感的缺陷,通过引入隶属度约束函数,推导出鲁棒的改进分割K平面聚类算法IFP-KPC(Improved Fuzzy Partitions for K-Plane Clustering),并利用Voronoi距离对IFP-KPC算法的鲁棒性进行了合理解释。实验结果表明IFP-KPC算法较之于KPC算法具有更好的聚类效果。 A new robust Improved Fuzzy Partitions for K-Plane Clustering (IFP-KPC) algorithm is proposed. The proposed algorithm can reduce the sensitivity of the k-plane clustering algorithm to noises in real datasets. Also the distances to the Voronoi cell are used to give a reasonable explanation for the robustness of IFP-KPC. Experimental results demonstrate the effectiveness of IFP-KPC.
出处 《电子与信息学报》 EI CSCD 北大核心 2008年第8期1923-1927,共5页 Journal of Electronics & Information Technology
基金 国家863项目(2006AA10Z313) 国家自然科学基金(60225015) 国防应用基础研究基金项目(A1420461266) 2005年教育部科学研究重点基金项目(105087)资助课题
关键词 K平面聚类 改进模糊分割 Voronoi距离 鲁棒性 K-plane clustering Improved fuzzy partitions Voronoi distance Robustness
  • 相关文献

参考文献13

  • 1Bradley P S, and Mangasarian O L. K-plane clustering. Journal of Global Optimization, 2000, 16(1): 23-32.
  • 2Mojtaba Tabatabaei-Pour, Karim Salahshoor, and Behzad Moshiri. A modified k-plane clustering algorithm for identification of hybrid systems. Proceedings of the 6th World Congress on Intelligent Control and Automation, Dalian, China, June 2006: 1333-1337.
  • 3Washizawa Y and Cichocki A. On line k-plane clustering learning algorithm for sparse component analysis. 2006 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP2006, Toulouse, May 2006: 681-684.
  • 4Dhillon I S, Marcotte E M, and Roshanl U. Diametrical clustering for identifying anti-correlated gene clusters. Bioinformatics, 2003, 19(13): 1612-1619.
  • 5Fischer I and Poland J. New methods for spectral clustering. Technical Report No. IDSIA-12-04, Dalle Molle Institute for Artificial Intelligence, Switzerland, 2004: 1-24. http://www. idsia. ch/idsiareport/IDSIA-12-04.pdf.
  • 6Georgiev P G, Theis F, and Cichocki A. Optimization algorithms for sparse representations and applications. Nonconvex Optimization and Its Applications, 2006, 82(6): 1-17.
  • 7Zhang Y J and Liu Z Q. Self-splitting competitive learning: A new on-line clustering paradigm. IEEE Trans. on Neural Network, 2002, 13(2): 369-380.
  • 8Wu Shuan-hu, Alan Wee-Chung Liew, and Yan Hong, et al. Cluster analysis of gene expression data based on self-splitting and merging competitive learning. IEEE Trans. on Information Technology in Biomedicine, 2004, 8(1): 5-15.
  • 9Xu Lei, Krzyak A, and Oja E. Rival penalized competitive learning for clustering analysis. RBF Net and Curve Detection. IEEE Trans. on Neural Network, 1993, 4(4): 636-649.
  • 10Hoppner F. Fuzzy shell clustering algorithms in image processing: fuzzy c-rectangular and 2-rectangular shells. IEEE Trans. on Fuzzy Systems, 1997, 5(4): 599-613.

二级参考文献6

  • 1Kailing K,Kriegel H,Kroger P.Density-connected Subspace Clustering for High-dimensional Data[C].Proc.of SIAM Data Mining Conf,2004.
  • 2Aggarwal C.Towards Systematic Design of Distance Functions for Data mining Applications[C].Proc.of SIGKDD Conf,2003.
  • 3Han J,Kamber M.Data Mining:Concepts and Techniques[M].San Francisco,CA:Morgan Kaufmann,2001.
  • 4Agrawal R,Gehrke J,Gunopulos D,et al.Automatic Subspace Clustering of High Dimensional Data for Data Mining Applications[C].Proc.of SIGMOD Conf,1998.
  • 5Ding C,He X,Zha H,et al.Adaptive Dimension Reduction for Clustering High-dimensional Data[C].Proc.of ICDM Conf,2002.
  • 6Aggarwal C,Yu P.Finding Generalized Projected Clusters in High-dimensional Spaces[C].Proc.of SIGMOD Conf,2000.

共引文献2

同被引文献25

  • 1Webb A R. Statistical Pattern Recognition. 2nd Edition San Fran- cisco, USA: John Wiley & Sons, 2002.
  • 2Anderberg M R. Cluster Analysis for Applications. New York, USA : Academic Press, 1973.
  • 3de SO Marques J P. Pattern Recognition Concepts, Methods and Applications. New York, USA: Springer, 2001.
  • 4Huang Zhexue. A Fast Clustering Algorithm to Cluster Very Large Categorical Data Sets in Data Mining//Proc of the SIGMOD Work- shop on Research Issues on Data Mining and Knowledge Discovery. Tucson, USA, 1997: 146- 151.
  • 5Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms. Norwell, USA : Kluwer Academic Publishers, 1981.
  • 6Lyer N S, Kandel A, Schneider M. Feature-Based Fuzzy Classifica- tion for Interpretation of Mammograms. Fuzzy Sets and Systems, 2000, 114(2) : 271 -280.
  • 7Yang M S, Hu Y J, Lin K C, et al. Segmentation Techniques for Tissue Differentiation in MRI of Ophthalmology Using Fuzzy Cluste- ring Algorithm. Journal of Magnetic Resonance Inmging.. 2002, 20(2) :173 - 179.
  • 8Bradley P S, Mangasarian O L. k-Plane Clustering. Journal of Glob- al Optimization, 2000, 16( 1 ) : 23 -32.
  • 9Duchene J, Leclercq S. An Optimal Transformation for Discrimi- nant and Principal Component Analysis. IEEE Trans on Pattern Analysis and Machine Intelligence, 1988, 10 (6) : 978 -983.
  • 10Okada T, Tomita S. An Optimal Orthonormal System for Discrimi- nant Analysis. Pattern Recognition,1985, 18(2) :139 -144.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部