摘要
如果一个正整数不能被大于1的平方数整除,则称这个正整数为无平方因子数.对于无平方因子数的分布,表示整数为无平方因子数的和等其他问题,现已有了很多深刻的研究.设(a,s)=1.论文研究了,并且给出了它们的渐进公式.
A positive integer q is called square-free number if it is the product of distinct prime number or q = 1. For the distribution of square-free numbers, representing integers by a sum of square free numbers some other related problems have been widely and deeply investigated. Let x be a positive real number and let ( a,s ) =1 In this paper, we investigated 1/n,n≤x,∑n无平方,n=a(s)lnn/n与1〈n〈x,∏n无平方,n=a(s)(1-1/n),and gave them asympotic formulars.
出处
《安徽大学学报(自然科学版)》
CAS
北大核心
2008年第4期11-13,共3页
Journal of Anhui University(Natural Science Edition)
基金
国家自然科学基金资助项目(10771103)
关键词
无平方因子数
求和
渐进公式
square-free numbers
sum
asympotic formular