期刊文献+

基于小波技术的网络流量分析和预测 被引量:13

A NETWORK TRAFFIC ANALYSIS AND FORECAST BASED ON WAVELET TECHNOLOGY
下载PDF
导出
摘要 互联网流量数据属于非平稳的时间序列,具有很强的突发性和自相似性等分形特征。小波分析能够保持对象的尺度不变性,很适合分析和处理自相似过程。分析了常见流量模型的优缺点,利用小波技术将网络流量分解、重构,并结合传统FARIMA模型分析和预测网络流量,实验结果表明该方法可以有效地对网络流量进行建模和预测。 The Internet traffic belongs to non-stationary time series, and it has some fractal characteristics of strong bursty and self-similarity. The wavelet technology can preserve the scale invariable, and it is applied to analyze and deal with the self-similarity process. The advantage and disadvantage of the existing models are analyzed, and the network traffic is analyzed and forecasted the wavelet technology and the traditional FARIMA model. The experimental result shows that this method is effective for network traffic modeling and forecasting.
出处 《计算机应用与软件》 CSCD 北大核心 2008年第8期70-72,共3页 Computer Applications and Software
基金 陕西省自然科学基金项目(2005f36)
关键词 自相似 网络流量 小波分析Mallat FARIMA模型 Self-similar Network traffic Wavelet analysis Mallat FARIMA model
  • 相关文献

参考文献9

二级参考文献38

  • 1薛飞.自相似网络业务的建模分析与性能评价研究(博士学位论文)[M].天津:天津大学,1998..
  • 2.[美]崔锦泰小波分析导论[M].西安:西安交通大学出版社,1995.01.
  • 3Krunz M. , Makowski A.. Modeling video traffic using M/G/infinity input processes: A compromise between markovian and LRD models. IEEE Journal on Selected Areas in Communications, 1998, 16(5):733-748.
  • 4Leland W. E, , Taqqu M. S, , Willinger W. , Wilson D. V., On the self-similar nature of ethernet traffic. IEEE/ACM Transactions on Networking, 1994, 2(1): 1-15.
  • 5Park K. , Kim G. , Crovella M.. On the effect of traffic self similarity on network performance. In: Proceedings of SHE International Conference Performance rand Control of Network Systems, Dallas, USA, 1997, 168-175.
  • 6Park K. , Willinger W.. Self-Similar Network Traffic and Performance Evaluation. Wiley-Interscience, 2000.
  • 7Paxson V. , Floyd S.. Wide-area traffic: The failure of poisson modelling. IEEE/ACM Transactions on Networking,1995, 3(3): 226-244.
  • 8Konstantina Papagiannaki, Nina Taft, Zhang Zhi I.i, Christophe Diot, Long-term forecasting of Internet backbone traffic:Observations and initial models. In:Proceedings of INFOCOM,London, UK, 2003, 753-764.
  • 9Groschwitz N. K. , Polyzos G. C.. A time series model of long-term NSFNET backbone traffic. In.. Proceedings of IEEE ICC,Pittsburgh, PA, 1994, 234-238.
  • 10Sang A. , Li S.. Predictability analysis of network traffic. In:Proceedings of INFOCOM, TelAviv, Israel, 2000, 342-351.

共引文献96

同被引文献121

引证文献13

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部