期刊文献+

一种求解约束优化问题的新粒子群算法 被引量:4

A NEW PARTICLE SWARM ALGORITHM FOR SOLVING CONSTRAINED OPTIMIZATION
下载PDF
导出
摘要 结合外点法具有局部搜索能力强、处理约束条件简单的特点,把违反约束的粒子用外点法处理以满足约束设计出一种新的粒子群算法求解约束优化问题。实验结果表明,新算法性能优于现有其它算法,是一种通用、高效、稳健的智能算法。它兼顾粒子群算法和外点法的优点,既有较快的收敛速度,又能以非常大概率求得约束优化问题的全局最优解,同时还提高了解的精度。 To keep those infeasible particles in feasible region, external point method is taken for its effective local search ability and simplicity of handling constrained conditions, a new particle swarm optimization algorithm is proposed for solving constrained opitmization problem. The experiment results demonstrate that the new particle swarm optimization algorithm is a general,effective and robust intelligent method, and its performance is superior to some other techniques. The proposed algorithm has paid attention to both the advantages of external point method and particle swarm optimization algorithm,it not only has a rather high convergence speed, but can also locate the global optimum with a rather high probability,and furthermore it improves the precision of solution.
出处 《计算机应用与软件》 CSCD 北大核心 2008年第8期254-256,共3页 Computer Applications and Software
关键词 外点法 全局最优解 粒子群优化算法 约束优化 External point method Global optimum Particle swarm optimization Constrained optimizations
  • 相关文献

参考文献8

二级参考文献40

共引文献74

同被引文献35

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部