期刊文献+

带尖锐特征的细分曲线参数化及曲线拟合

Parameterization of Subdivision Curve with Sharp Feature and Their Applications
下载PDF
导出
摘要 快速精确地估计曲线曲面参数具有广泛的应用。在前人研究的基础上,通过对细分过程及三次B样条细分矩阵的特征结构进行分析,将细分模式转换到其特征空间,给出了带尖锐特征的B样条细分曲线的参数化形式。并用于处理带尖锐特征的光滑曲线拟合问题。以曲率极大点作为初始拟合点。利用推导的参数化公式构造曲线的尖锐部分并方便误差估计。拟合点为曲线段端点,误差估计时不仅优化计算速度,而且在曲线分支距离过近或自交情况下避免错误匹配。 The rapid and precise evaluation of curve & surface parameterizations has wide application. In the paper we present a parameterization technique for cubic B-spline subdivision curves with sharp feature. The eigenstructure of the subdivision matrix is analyzed. The subdivision matrix and control points are projected into the eigenspace of matrix. The technique can deal with curve fitting with sharp features directly. The vertices with maximal curvature are as the initial fitting vertices. With the parameterization technique given in this paper, the curve segment with sharp feature is constructed; and the distance between the original data and the curve is also calculated. The fitting vertices are located at the extremities of curve segment; during error estimation it can improve computation speed and avoid mismatching when the target curve is self intersection or when two branches are too close.
出处 《中国图象图形学报》 CSCD 北大核心 2008年第8期1554-1559,共6页 Journal of Image and Graphics
基金 广东省自然科学基金项目(07006689)
关键词 尖锐特征 参数化 曲线拟合 细分 sharp feature,parameterization,curve fitting,subdivision
  • 相关文献

参考文献8

  • 1Stam J. Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values [ A ]. In: Proceedings of SIGGRAPH 1998 [C], New York: ACM Press, 1998:395-404.
  • 2Park H, Lee J-H. B-spline curve fitting based on adaptive curve refinement using dominant points [ J ]. Computer-Aided Design, 2007,39 (6) : 439 - 451.
  • 3Yang H, Wang W, Sun J. Control point adjustment for B-spline curve approximation [ J ]. Computer-Aided Design, 2004, 36 ( 7 ) : 639 - 652.
  • 4Park H. An error-bounded approximate method for representing planar curves in B-splines [ J]. Computer Aided Geometric Design 2004 : 21 (5) : 479 - 97.
  • 5Ma W, Ma X, Tso S, et al. A direct approach for subdivision surface fitting from a dense triangular mesh [ J]. Computer Aided Design, 2004,36 ( 16 ) :525 - 536.
  • 6李桂清,马维银,鲍虎军.带尖锐特征的Loop细分曲面拟合系统[J].计算机辅助设计与图形学学报,2005,17(6):1179-1185. 被引量:22
  • 7Lavoue G,Dupont F, Baskurt A. A new subdivision based approach for piecewise smooth approximation of 3D polygonal curves [ J ]. Pattern Recognition, 2005, 38(8): 1139- 1151.
  • 8Zorin D,Schroder P. Subdivision for modeling and animation [ A ]. Ih: SIGGRAPH 2000 Course Notes [ C ], New Orleans, 2000: 65 - 102.

二级参考文献26

  • 1Halstead Mark, Kass Michael, deRose Tony. Efficient, fair interpolation using Catmull-Clark surfaces [A]. In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, Anaheim, California, 1993. 35~44
  • 2Catmull E, Clark J. Recursively generated B-spline surfaces on arbitrary topological meshes [J]. Computed-Aided Design,1978, 10(6): 350~355
  • 3Nasri A H. Curve interpolation in recursively generated B-spline surfaces over arbitrarily topology [J]. Computer Aided Geometric Design, 1997, 14(1): 13~30
  • 4Nasri A H, Abbas A. Designing Catmull-Clark subdivision surfaces with curve interpolation constraints [J]. Computer & Graphics, 2002, 26(3): 393~400
  • 5Nasri A H. Interpolating an unlimited number of curves meeting at extraordinary points on subdivision surfaces [J]. Computer Graphics Forum, 2003, 22(1): 87~97
  • 6Habib A, Warren J. Edge and vertex insertion for a class of C1 subdivision surfaces [J]. Computer Aided Geometric Design,1999, 16(4): 223~247
  • 7Levin A. Combined subdivision schemes for the design of surfaces satisfying boundary conditions [J]. Computer Aided Geometric Design, 1999, 16(5): 345~354
  • 8Levin A. Interpolating nets of curves by smooth subdivision surfaces [A]. In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, Los Angeles, California,1999. 57~64
  • 9Hoppe H, deRose T, Duchamp T, et al. Piecewise smooth surface construction [A]. In: Computer Graphics Proceedings,Annual Conference Series, ACM SIGGRAPH, Orlando,Florida, 1994. 295~302
  • 10Suzuki H, Takeuchi S, Kanai T, et al. Subdivision surface fitting to a range of points [A]. In: Proceedings of Pacific Graphics, Seoul, 1999. 158~167

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部