期刊文献+

精神分裂症幻听患者初级听觉皮质的脑磁图研究 被引量:1

Magnetoencephalography study of primary auditory cortex in male schizophrenia patients with auditory hallucination
原文传递
导出
摘要 目的探讨在不同频率纯音刺激下男性精神分裂症幻听患者初级听觉皮质的脑磁图(MEG)定位。方法对均为右利手的10例男性精神分裂症幻听患者(研究组)和11名男性健康受试者(对照组),分别给予频率为0.5,2,4,8kHz的纯音刺激,强度90dB,持续200ms,刺激声间隔1s。用脑磁图设备记录刺激后产生的听觉诱发磁场,并将MEG资料叠加到核磁共振成像以获得磁源性影像。结果(1)对照组初级听觉皮质均定位于双侧颞横回;与对照组比较,研究组右侧初级听觉皮质位置更靠近颞横回外部,左侧明显偏向颞上回后外下部(P〈0.05)。(2)在分别给予2kHz和4kHz纯音刺激时,研究组大脑双侧M100潜伏期[2kHz:左(97±t6)ms,右(97±10)ms,4kHz:左(93±13)ms,右(99±14)ms]均短于对照组[2kHz:左(121±15)ms,右(113±6)ms,4kHz:左(113±13)ms,右(114±6)ms](均P〈0.01),而波幅[2kHz:左(89±10)fT,右(118±37)fT,4kHz:左(81±9)fT,右(108±14)fT]高于对照组[2kHz:左(73±12)fT,右(79±13)fT,4kHz:左(69±14)fT,右(81±20)fT](均P〈0.05—0.01)。结论男性精神分裂症幻听患者的初级听觉皮质位置与正常人不同,其M100波幅高,潜伏期短,这些功能及解剖结构的异常可能是精神分裂症幻听产生的病理生理机制之一。 Objective To investigate the localization of primary auditory cortex by using magnetoencephalography in male schizophrenia patients with auditory hallucination by various frequency of pure tone stimuli and to explore the pathophysiologic mechanism of auditory hallucination. Methods Ten male schizophrenia patients with auditory hallucination and 11 matched healthy subjects were recruited in the study. All the participants were right handed, and given various frequencies of 0. 5, 2, 4, 8 kHz pure tone stimuli, with intensity of 90 dB sound pressure level, persistent time of 200 ms, interstimulus interval of 1 second. The auditory evoked magnetic fields (AEF) were recorded by MEG after stimulus, and the MEG data were superimposed on MRI to obtain MSI. Results AEF M100 was induced in all subjects after giving the binaural stimuli, and the primary auditory cortex was localized in the bilateral transverse temporal gyri in controls, while in the outer of the transverse temporal gyri in the right hemispheric, and in the posterior- exterior-low part of superior temporal gyrus in the left hemispheric in patients. M100 latencies in bilateral globe were shorter in patients [ (left 97 ±16) ms, ( right 97 ± 10) ms] than controls [ ( left 121 ± 15) ms, (right 113±6)ms] and the amplitudes were higher in patients [ (left 89 ± 10)fT, (right 118 ±37)fT] than controls [ (left 73 ± 12 )fT, (right 79 ± 13 )fT ] ( P 〈 0. 05 -0. 01 ). Conclusions The localization of primary auditory cortex in male schizophrenia patients with auditory hallucination is different from healthy people, with shortened M100 latency and increased amplitudes in patients. These function and anatomical structure abnormality could be one of the pathophysiologic mechanism of auditory hallucination in schizophrenia.
出处 《中华精神科杂志》 CAS CSCD 北大核心 2008年第3期148-151,共4页 Chinese Journal of Psychiatry
关键词 精神分裂症 脑磁图描记术 幻觉 听觉皮质 Schizophrenia Magnetoencephalography Hallucinations Auditory cortex
  • 相关文献

参考文献20

  • 1Kasai K, Yamasue H, Araki T. Neuroanatomy and neurophysiology in schizophrenia. Seishin Shinkeigaku Zasshi, 2004, 106:851-866.
  • 2Otsubo H, Snead OC 3rd. Magnetoencephalography and magnetic source imaging in children. J Child Neurol, 2001, 16:227-235.
  • 3Hamalainen M, Hari R, llmoniemi R J, et al. Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain. Rrvi Mod Physics, 1993,65:413-452.
  • 4Hanlon FM, Miller GA, Thoma RJ, et al. Distinct M50 and M100 auditory gating deficits in schizophrenia. Psychophysiology, 2005,42:417-427.
  • 5Roberts TP, Poeppel D. Latency of auditory evoked M100 as a function of tone frequency. Neuroreport, 1996,7 : 1138-1140.
  • 6Shergill SS, Bullmore E, Simmons A, et al. Functional anatomy of auditory verbal imagery in schizophrenic patients with auditory hallucinations. Am J Psychiatry, 2000,157 : 1691-1693.
  • 7Fletcher PC, Frith CD, Grasby PM, et al. Local and distributed effects of apomorphine on fronto-temporal function in acute unmedicated schizophrenia. J Neurosci, 1996,16:7055-7062.
  • 8Lawrie SM, Buechel C, Whalley HC, et al. Reduced frontotemporal functional connectivity in schizophrenia associated with auditory hallucinations. Biol Psychiatry., 2002, 51 : 1008- 1011.
  • 9Rossell SL, Shapleske J, Fukuda R, et al. Corpus callosum area and functioning in schizophrenic patients with auditory--verbal hallucinations. Schizophr Res,2001,50(1/2) :9-17.
  • 10Tiitinen H, Salminen NH, Palomaki KJ, et al. Neuromagnetic recordings reveal the temporal dynamics of auditory spatial processing in the human cortex. Neurosci Lett,2006,396 : 17-22.

二级参考文献15

  • 1李克勇,王直中,曹克利.正常青壮年的颞叶脑磁图及短纯音诱发脑磁反应初探[J].中华医学杂志,1995,75(9):548-551. 被引量:5
  • 2Nakasato N, Fujita S, Seki K, et al. Functional localization of bilateral auditory cortices using an MRI-linked whole head magnetoencephalography (MEG) system. Electroencephalogr Clin Neurophysol,1995,94:183-190.
  • 3Pantev C, Hoke M, Lehnertz K, et al. Identification of sources of brain neuronal activity with high spatiotemporal resolution through combination of neuromagnetic source localization (NMSL) and magnetic resonance imaging (MRI). Electroencephalogr Clin Neu
  • 4Papanicolaou AC, Baumann S, Rogers RL, et al. Localization of auditory response sources using magnetoencephalography and magnetic resonance imaging. Arch Neurol,1990,47:33-37.
  • 5Erne SN, Hoke M. Short-latency evoked magnetic fields from the human auditory brainsten.Adv Neurol,1990,54:167-176.
  • 6Pelizzone M,Hari R,Makela JP,et al.Cortical origin of middle-latency auditory evoked responses in man.Neurosci Lett,1987,82:303-307.
  • 7Fujioka T, Kakigi R, Gunji A, et al.The auditory evoked magnetic fields to very high frequency tones.Neuroscience,2002,112:367-381.
  • 8Vasama JP, Makela JP. Auditory pathway plasticity in adult humans after unilateral idiopathic sudden sensorineural hearing loss.Hear Res,1995,87:132-140.
  • 9Roberts TP, Ferrari P, Poeppel D. Latency of evoked neuromagnetic M100 reflects perceptual and acoustic stimulus attributes. Neuroreport,1998,9:3265-3269.
  • 10Roberts TP, Poeppel D. Latency of auditory evoked M100 as a function of tone frequency.Neuroreport,1996,7:1138-1140.

共引文献5

同被引文献30

  • 1史家波,张志珺,郝贵峰,姚志剑,陈宁.男性精神分裂症患者脑侧化与幻听的功能磁共振成像研究[J].中华精神科杂志,2007,40(2):65-69. 被引量:10
  • 2Zou QH, Zhu CZ, Yang Y, et al. An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF[J]. J NeurosciMethods, 2008, 172(1):137-141. doi:lO, lO16/j, jneumeth. 2008.04. Ol 2.
  • 3Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems[J]. Nat Rev Neurosei, 2009, 10(3):186-198.
  • 4Plaze M, Bartrrs-Faz D, Martinot JL, et al. Left superior temporal gyrus activation during sentence perception negatively correlates with auditory hallucination severity in schizophrenia patients[J]. Schizophr Res, 2006, 87(1-3): 109-115. doi:lO, lO16/j, schres. 2006.05.005.
  • 5Alba-Ferrara L, Weis S, Damjanovic L, et al. Voice identity recognition failure in patients with schizophrenia[J]. J Nerv Ment Dis, 2012, 200(9):784-790. doi:10. 1097/NMD. 0bO 13e3182661"835.
  • 6Allen P, Lari F, McGuire PK, et al. The hallucinating brain: a review of structural and functional neuroimaging studies of hallucinations[J]. Neurosci Biobehav Rev, 2008, 320): 175-191.
  • 7Chhabra S, Badcock JC, Maybery MT, et al. Voice identity discrimination in schizophrenia[J]. Neuropsychologia, 2012, 5002):2730-2735. doi:10. 1016/j. neuropsychologia. 2012. 08.006.
  • 8David AS. Auditory hallucinations: phenornenology, neuropsychology and neuroimaging update[l]. Aeta Psyehiatr Scand Suppl, 1999, 395:95-104.
  • 9Song XW, Doug ZY, Long XY, et al. REST: a toolkit for resting-state functional magnetic resonance imaging data processing[J]. PLoS One, 2011, 6(9):e25031. doi:10. 1371/ Journal. oone. 0025031.
  • 10Satterthwaite TD, Elliott MA, Gerraty RT, et al. An improved framework for confound regression and filtering for control of motion artifact in the preproeessing of resting-state functional connectivity data[J]. Neuroimage, 2013, 64:240-256.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部