期刊文献+

基于分形插值理论的径流预测探讨 被引量:12

Study of runoff prediction based on fractal interpolation theory
下载PDF
导出
摘要 基于南桠河冶勒水库月平均径流资料,运用重标极差(R/S)分析方法揭示了径流复杂的非线性特性隐藏下的有序性,即持续性特性。由于持续性区间内径流变化的高度相关性,由此通过组织历史数据建立迭代函数系统,经分形插值方法求取吸引子并在吸引子基础上进行延拓,建立了基于分形插值的预测模型。通过实际验证表明,该预测模型取得了较好的结果,满足实际应用要求,并为径流预测提供了新的探索及进一步研究的铺垫。 According to the historical monthly runoff data of Yele reservoir on Nanya river, the durability property concealed behind the complex non-linear characteristics of runoff may be discovered by using the method of rescaled range analysis. Due to the close correlation among monthly runoff within the durability span, the iterated function system(IFS) is established by organizing the historical runoff data. Based on the IFS, the runoff forecasting model may be established with extending the attractor by using fractal interpolation method. A practical example proves that the model is valid and practical, it can lay a foundation for the runoff prediction in the future.
出处 《水力发电学报》 EI CSCD 北大核心 2008年第4期20-25,共6页 Journal of Hydroelectric Engineering
基金 国家自然科学基金资助项目(50539140)
关键词 水文学 径流预测 分形插值 迭代函数系统 R/S分析 hydrology runoff prediction fractal interpolation iterated function system rescaled range analysis
  • 相关文献

参考文献9

  • 1Fernando D A K, Jayawardena A W. Runoff forecasting using RBF networks with OLS algorithm[ J ]. Hydrologic Engrg, ASCE, 1998,3 (3) : 203 - 209.
  • 2康玲,王乘,姜铁兵.Volterra神经网络水文模型及应用研究[J].水力发电学报,2006,25(5):22-26. 被引量:9
  • 3王文圣,熊华康,丁晶.日流量预测的小波网络模型初探[J].水科学进展,2004,15(3):382-386. 被引量:32
  • 4Mesa O J, Poveda G. The Hurst effect : the scale of fluctuation approach [ J ]. Water Resour Res, 1993,29 (12) : 3995 - 4002.
  • 5Anderson P L, Meershcaert M M. Modeling river flows with heavy tails[ J]. Water Resour Res, 1998,34(9) :2271 - 2280.
  • 6Tokinaga S, Moriyasu H, Miyazaki A, et al. Forecasting of time series with fractal geometry by using scale transformations and parameter estimations obtained by the wavelet transform [ J ]. Electronics and Communications in Japan, Part3,1997,34 (9) :2054 - 2062.
  • 7Hurst H E. Long-term storage capacity of reservoirs[ J]. Trans. Am. Soc. Cir. Eng. 1951, (116) : 770- 808.
  • 8Edgar E Peters. Fractal market analysis[ M]. New York:John Wiley & Sons, Inc, 1996.
  • 9Bamsley M F. Fractal functions and interpolation[ J]. Const. Approx, 1986, (2) : 303 - 329.

二级参考文献6

共引文献39

同被引文献196

引证文献12

二级引证文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部