摘要
This paper studies the self-organization of the polymer in solar cells based on poly(3-hexylthiophene): [6, 6]-phenyl C61-butyric acid methyl ester by controlling the growth rate of active layer. These blend films are characterized by UV-vis absorption spectroscopy, charge-transport dark J - V curve, x-ray diffraction pattern curve, and atomic force microscopy. The results indicate that slowing down the drying process of the wet films leads to an enhanced selforganization, which causes an increased hole transport. Increased incident light absorption, higher carrier mobility, and balanced carrier transport in the active layer explain the enhancement in the device performance, the power conversion efficiency of 3.43% and fill factor up to 64.6% are achieved under Air Mass 1.5, 100 mW/cm^2.
This paper studies the self-organization of the polymer in solar cells based on poly(3-hexylthiophene): [6, 6]-phenyl C61-butyric acid methyl ester by controlling the growth rate of active layer. These blend films are characterized by UV-vis absorption spectroscopy, charge-transport dark J - V curve, x-ray diffraction pattern curve, and atomic force microscopy. The results indicate that slowing down the drying process of the wet films leads to an enhanced selforganization, which causes an increased hole transport. Increased incident light absorption, higher carrier mobility, and balanced carrier transport in the active layer explain the enhancement in the device performance, the power conversion efficiency of 3.43% and fill factor up to 64.6% are achieved under Air Mass 1.5, 100 mW/cm^2.
基金
Project supported by the National '973' Project of China (Grant No 2002CB613405)
the National Natural Science Foundation of China (Grant No 90201023)
the Natural Science Foundation of South China University of Technology (Grant No E5040910)