期刊文献+

含区间参数多目标系统的微粒群优化算法 被引量:22

Particle Swarm Optimization for Multi-objective Systems with Interval Parameters
下载PDF
导出
摘要 参数不确定优化问题是实践中经常遇到的复杂优化问题,现有方法多针对单目标函数的情况.本文利用微粒群优化算法解决含区间参数多目标优化问题,提出一种基于概率支配的多目标微粒群优化算法.该算法通过定义概率支配关系,比较所得解的优劣;基于σ区间值,选择微粒的全局极值点,并给出新的微粒个体极值点及外部储备集的更新策略.与传统多目标微粒群优化算法比较,仿真结果表明本文所提算法的有效性. Optimization problems with uncertainties are a kind of familiar and complicated optimization problems, and most of the existing methods only deal with the case of a single-objective function. To solve multi-objective optimization problems with interval parameters by particle swarm optimization, a multi-objective particle swarm optimization algorithm based on probable dominance is proposed in this paper. In the algorithm, the probable dominance and the a intervals are presented to compare the quality of solutions and select the globally optimal particles, respectively. A novel strategy for updating locally optimal particles and exterior archive are put forward. The feasibility of the proposed algorithm is validated by simulation results.
出处 《自动化学报》 EI CSCD 北大核心 2008年第8期921-928,共8页 Acta Automatica Sinica
基金 国家自然科学基金(60775044) 江苏省普通高校研究生科研创新计划(CX07B-115Z)资助~~
关键词 多目标 微粒群优化 区间参数 概率支配 Multi-objective, particle swarm optimization, interval parameter, probability dominance
  • 相关文献

参考文献24

二级参考文献50

  • 1席裕庚,柴天佑,恽为民.遗传算法综述[J].控制理论与应用,1996,13(6):697-708. 被引量:347
  • 2Mulvey J M, Vanderbei R J, Zenios S A. Robust optimization of large-scale systems [J]. Operations Research,1995, 43:263--281.
  • 3Sengupta J K. Robust solutions in stochastic linear programming [J]. Journal of Operations Research Society, 1991,42:857--870.
  • 4Tanaka H. On fuzzy mathematical programming [J]. Journal of Cybernetics, 1984,3(4): 37--46.
  • 5Rommelfanger H. Linear programming with fuzzy objective [J]. Fuzzy Sets and Systems, 1989, 29: 31--48.
  • 6Alefeld G, Herzberger J. Introduction to Interval Computions [M]. New York: Academic Press, 1983 (translatedby J. Rokne, ).
  • 7Ishbuchi H, Tanaka H. Formulation and analysis of linear programming problem with interval coefficients [J]. Journal of Japan Industrial Management Association, 1989, 40(5): 320-- 329.
  • 8Looms G, Sugden R. Testing for regret and disappointment in choice under uncertainty [J], The Economic Journal,1982, 92:805--824.
  • 9Ritov I. Probability of regret: Anticipation of uncertainty resolution in choice [J]. Organizational Behavior and Human Decision Processes, 1996, 66(2): 228--236.
  • 10Inuiguchi M. , Sakawa M. , Minimax regret solution to linear programming problems with an interval objective function[J]. European Journal of Operational Research, 1995, 86:526--536.

共引文献196

同被引文献261

引证文献22

二级引证文献166

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部