期刊文献+

基于模糊粗糙模型的粗神经网络建模方法研究 被引量:5

Fuzzy Rough Model Based Rough Neural Network Modeling
下载PDF
导出
摘要 提出一种基于模糊粗糙模型的粗神经网络建模(FRM_RNN_M)方法.该方法通过自适应G-K聚类实现输入输出积空间的模糊划分,进而在聚类数和约简属性搜索的基础上,提取优化的模糊粗糙模型(Fuzzy rough model,FRM),并在融合神经网络后实现粗神经网络建模.分类实验表明,FRM_RNN_M的分类性能优于传统贝叶斯和LVQ方法,而且比单纯的FRM模型具有更强的综合决策能力,和传统的粗逻辑神经网络(Rough logic neural network,RLNN)相比,FRM_RNN_M方法建立的神经网络结构精简,收敛速度快,具有更强的泛化能力. The rough neural network model based on fuzzy rough model (FRM), FRM_RNN.M, is addressed. By means of adaptive Gaustafason Kessel (G-K) algorithm, fuzzy partition can be implemented in the input-output product space. Based on the search of cluster number and feature reduction, optimized FRM can be extracted and rough neural network model can be constructed after integrating the neural network technique. Experiment results indicate that FRM_RNN_M is superior to conventional Bayesian and LVQ methods. Moreover, it has a better synthesis decision-making ability than the single FRM. Compared with conventional rough logic neural network (RLNN), the neural network based on FRM_RNN_M has superiorities in size of structure, convergence speed, and generalization ability.
出处 《自动化学报》 EI CSCD 北大核心 2008年第8期1016-1023,共8页 Acta Automatica Sinica
基金 国家自然科学基金(60775047) 湖南省自然科学基金(06JJ50112)资助~~
关键词 粗糙集 粗糙数据模型 粗神经网络 Rough sets, rough data model (RDM), rough neural network (RNN)
  • 相关文献

参考文献29

  • 1Pawlak Z. Rough set theory and its application to data analysis. Cybernetics and Systems, 1998, 29(9): 661-688
  • 2Pal S K. Soft data mining, computational theory of perceptions, and rough-fuzzy approach. Information Sciences, 2004,163(1-3): 5-12
  • 3Beaubouef T, Ladner R, Perry F. Rough set spatial data modeling for data mining. International Journal of Intelligent Systems, 2004, 19(7): 567-584
  • 4Zeng C H, Xu Y, Zheng P, Xie W C. Knowledge discovery for goods classification based on rough set. In: Proceedings of IEEE International Conference on Cranular Computing. Beijing, China: IEEE, 2005. 334-337
  • 5Shao X Y, Wang Z H, Li P G, Feng C X J. Integrating data mining and rough set for customer group-based discovery of product configuration rules. International Journal of Production Research, 2006, 44(14): 2789-2811
  • 6Nguyen H S. Approximate Boolean reasoning approach to rough sets and data mining. Lecture Notes in Computer Science, 2005, 3642:12-22
  • 7Jiang Y J, Chen J, Ruan X Y. Fuzzy similarity-based rough set method for case-based reasoning and its application in tool selection. International Journal of Machine Tools and Manufacture, 2006, 46(2): 107-113
  • 8Pal S K, Shankar B U, Mitra P. Granular computing, rough entropy and object extraction. Pattern Recognition Letters, 2005, 26(16): 2509-2517
  • 9Liu Q, Wang J Y. Semantic analysis of rough logical formulas based on granular computing. In: Proceedings of IEEE International Conference on Granular Computing. Atlanta, USA: IEEE, 2006. 393-396
  • 10Kowalczyk W. Analyzing temporal patterns with rough sets. In: Proceedings of the 4th European Congress on Intelligent Techniques and Soft Computing. Aachen, Germany: Wissenschaftsverlag, 1996. 139-143

二级参考文献41

  • 1梅晓丹,孙圣和.粗神经网络的禁止搜索训练算法研究[J].电子学报,2001,29(z1):1908-1911. 被引量:4
  • 2Pawlak Z. Rough Set: Theoretical Aspects of Reasoning about Data Boston: Kluwer Publishers, 1991.
  • 3Skowron A, Peters J F. Rough sets: Trends and challenges. In: Wang G, Liu Q, Yao Y, Skowron A, eds. Rough Sets, Fuzzy Sets,Data Mining and Granular Computing. LNAI 2639, Berlin, Heidelberg: Springer-Verlag, 2003.25-34.
  • 4Tsumoto S. Mining diagnostic rules from clinical databases using rough sets and medical diagnostic model. Information Sciences,2004,162(2) :65-80.
  • 5Peters JF, Skowron A. A rough sets approach to knowledge discovery. International Journal of Intelligent Systems, 2002,17(2):109-112.
  • 6Huang C-C, Tseng T-L. Rough set approach to case-based reasoning application. Expert Systems with Applications, 2004,26(3):369-385.
  • 7Polkowski L. Toward rough set foundations-mereological approach. In: Tsumoto S, Slowinski R, Komorowski HJ, Grzymala-Busse JW, eds. Rough Sets and Current Trends in Computing. LNAI 3066, Berlin, Heidelberg: Springer-Verlag, 2004. 8-25.
  • 8Peters JF, Skowron A, Synak P, Ramanna S. Rough sets and information granulation. LNCS 2715, Heidelberg: Springer-Verlag,2003. 370-377.
  • 9Han JC, Hu XH, Nick C. Supervised learning: A generalized rough set approach. In: Ziarko W, Yao Y, eds. Rough Sets and Current Trends in Computing. LNAI 2005, Heidelberg: Springer-Verlag, 2001. 322-329.
  • 10Slowinski R, Vanderpooten D. A generalized definition of rough approximations based on similarity. IEEE Trans. on Knowledge and Data Engineering, 2000,12(2):331-336.

共引文献38

同被引文献47

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部