期刊文献+

多项式光滑的支持向量机一般模型研究 被引量:17

A General Formulation of Polynomial Smooth Support Vector Machines
下载PDF
导出
摘要 2005年袁玉波等人用一个多项式函数作为光滑函数,提出了一个多项式光滑的支持向量机模型PSSVM(polynomial smooth support vector machine),使分类性能及效率得到了一定提高.2007年熊金志等人用插值函数的方法导出了一个递推公式,得到了一类新的光滑函数,解决了关于是否存在以及如何寻求性能更好的光滑函数的问题.然而,支持向量机是否存在其他多项式光滑模型,以及多项式光滑模型的一般形式是什么等问题依然存在.为此,将一类多项式函数作为新的光滑函数,使用光滑技术,提出了多项式光滑的支持向量机一般模型dPSSVM(dth-order polynomial smooth support vector machine).用数学归纳法证明了该一般模型的全局收敛性,并进行了数值实验.实验结果表明,当光滑阶数等于3时,一般模型的分类性能及效率为最好,并优于PSSVM模型;当光滑阶数大于3后,分类性能基本不变,效率会有所降低.成功解决了多项式光滑的支持向量机的一般形式问题. Yuan et al. used a polynomial function as smoothing function, and proposed a polynomial smooth support vector machine (PSSVM) in 2005, which improved the performance and efficiency of SVM for classification. Using the technique of interpolation functions, Xiong et al. developed a recursive formula to obtain a new class of smoothing functions, and solved the problems of existence and seeking better smoothing functions in 2007. However, problems still exist in looking for other smooth models and the general formulation of the polynomial smooth support vector machines. A class of polynomial functions is applied as new smoothing functions, and a dth-order polynomial smooth support vector machine (dPSSVM) is proposed using the smoothing technique, which is a general formulation of polynomial smooth support vector machines. The global convergence of dPSSVM is proved by a mathematical inductive method, and experiments are carried out to evaluate dPSSVM. The numerical results show that the performance and efficiency of dPSSVM are best, and better than that of the PSSVM when its smooth order is 3, but after its smooth order is greater than 3, the performance of classification is almost the same while the efficiency becomes worse. The problem of general formulation is successfully solved for polynomial smooth support vector machines.
出处 《计算机研究与发展》 EI CSCD 北大核心 2008年第8期1346-1353,共8页 Journal of Computer Research and Development
基金 国家自然科学基金项目(60573029,60773050)~~
关键词 分类 支持向量机 Newton—Armijo法 光滑函数 一般形式 classification support vector machine Newton-Armijo algorithm smoothing function general formulation
  • 相关文献

参考文献9

  • 1李春花,凌贺飞,卢正鼎.基于支持向量机的自适应图像水印技术[J].计算机研究与发展,2007,44(8):1399-1405. 被引量:17
  • 2王剑,林福宗.基于支持向量机(SVM)的数字音频水印[J].计算机研究与发展,2005,42(9):1605-1611. 被引量:12
  • 3Platt J. Sequential minimal optimization: A fast algorithm for training support vector machines [G] //Scholkopf B, et al. eds. Advances in Kernel Methods Support Vector Learning. Cambridge, MA: MIT Press, 1999:185-208.
  • 4Joachims T. Making large-scale support vector machine learning practical[G] //Scholkopf B, et al. eds. Advances in Kernel Methods Support Vector Learning. Cambridge, MA: MIT Press, 1999:169-184.
  • 5Mangasarian O L, Musicant D R. Successive overrelaxation for support vector machines[J]. IEEE Trans on Neural Networks, 1999, 10(8): 1032-1037.
  • 6Lee Y J, Mangasarian O L. SSVM: A smooth support vector machine for classification [J]. Computational Optimization and Applications, 2001, 22(1): 5-21.
  • 7Lu S, Wang X. A comparison among four SVM classification methods: LSVM, NLSVM, SSVM and NSVM [C]//Proc of the 3rd Int'l Conf on Machine Learning and Cybernetics. New York: IEEE, 2004:4277-4282.
  • 8袁玉波,严杰,徐成贤.多项式光滑的支撑向量机[J].计算机学报,2005,28(1):9-17. 被引量:81
  • 9熊金志,胡金莲,袁华强,胡天明,李广明.一类光滑支持向量机新函数的研究[J].电子学报,2007,35(2):366-370. 被引量:42

二级参考文献33

  • 1袁玉波,严杰,徐成贤.多项式光滑的支撑向量机[J].计算机学报,2005,28(1):9-17. 被引量:81
  • 2王向阳,杨红颖,赵红,陈利科.基于模糊聚类分析的自适应图像空间域水印技术[J].小型微型计算机系统,2005,26(7):1255-1259. 被引量:10
  • 3王剑,林福宗.基于支持向量机(SVM)的数字音频水印[J].计算机研究与发展,2005,42(9):1605-1611. 被引量:12
  • 4J.F. Tilki, A. A. Beex. Encoding a hidden auxiliary channel onto a digital audio signal using psychoacoustic masking. http:∥citeseer. ist. psu. edu/tilki97encoding. html, 1997.
  • 5Y. Wang. A new watermarking method of digital audio content for copyright protection. The 4th Int'l Conf. Signal Processing,Beijing, 1998.
  • 6L. Boney, A. H. Tewfik, K. Hamdy. Digital watermarks for audio signals. The 1996 Int'l Conf. Multimedia Computing and Systems. http:∥www. almaden. ibm. com/cs/people/dgruhl/313.pdf, 1996.
  • 7C.-C. Tseng, C.-B. Tseng, S.-L. Lee. Audio watermarking based on linear prediction and vector quantization. In:Processdings of CVG1P, 2001.
  • 8J. Lacy, S. R. Quackenbush, A. R. Reibman, et al. On combining watermarking with perceptual coding. In: Proc. Int'l Conf. Acoustics, Speech, and Signal Processing, 1998. 3725~3728.
  • 9Pao-Ta Yu, Hung-Hsu Tsai, Jyh-Shyan Lin. Digital watermarking based on neural networks for color images. Signal Processing, 2001, 81:663~671.
  • 10M. Kutter, F. Jordan, F. Bossen. Digital watermarking of color images using amplitude modulation. Journal of Electron Imaging,1998, 7(2): 326~332.

共引文献113

同被引文献67

引证文献17

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部