期刊文献+

动态社会网络中的社区挖掘算法研究 被引量:3

Algorithm Research on Community Mining from Dynamic Social Networks
下载PDF
导出
摘要 为解决社区挖掘问题,针对社会网络的动态特性,给出了新的社区定义,并结合连通性和频繁性概念提出一种新的算法DCSMA(Dynamic Community Structure Mining Algorithm)。挖掘时刻连通的个体集合作为社区,采用层状结构模型,根据重要性权重区分社区内个体,使社区结构更加清晰。在标准测试数据集上的实验结果表明了该算法的可行性和有效性。 Community mining is one of the hot research fields in social network analysis. In view of the dynamic character of social network, proposes a novel definition of community, and based on the concept of connectivity and frequency, it introduces a novel algorithm DCSMA ( Dynamic Community Structure Mining Algorithm). It can successfully find the set of individuals which retain connectivity at any successive moment. In addition, we adopt the samdwich model, and distinguish the individuals according to their importance in order to make the structural framework of community more clear and better understood. Experiments on standard test data show that the algorithm is feasible and effective.
出处 《吉林大学学报(信息科学版)》 CAS 2008年第4期380-385,共6页 Journal of Jilin University(Information Science Edition)
基金 国家自然科学基金重点资助项目(60433020 60673099) 国家863计划基金资助项目(2007AA04Z114)
关键词 社会网络 社区挖掘 连通性 层状结构模型 social network community mining connectivity samdwich model
  • 相关文献

参考文献12

  • 1SCOTT J. Social Network Analysis : A Handbook Sage Publications [ M ]. London : [ s. n. ], 2000.
  • 2BERGER WOLF T Y, SAIA J. A Framework for Analysis of Dynamic Social Networks [ C] //Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 2006. Philadelphia, Pennsylvania, USA: 124- 136.
  • 3BRODER A, KUMAR R, MAGHOUL F, et al. Graph Structure in the Web [ J]. Computer Networks, 2000, 33 (5) : 309 -320.
  • 4MOORE C, NEWMAN M E J. Epidemics and Percolation in Small-World Networks [M]. [S. l. ] : Phys Rev E 61, 2000: 5678 -5682.
  • 5NEWMAN M E J. The Structure of Scientific Collaboration Networks [ M]. [ S. l. ] : Proc Natl Acad Sci USA 98, 2001:404- 409.
  • 6REDNER S. How Popular is Your Paper? An Empirical Study of the Citation Distribution [ M ]. [ S. l. ] : Eur Phys J B 4, 1998: 131-134.
  • 7WAGNER A, FELL D. The Small World Inside Large Metabolic Networks [ M]. London: Proc R Soc London B 268, 2001 : 1803-1810.
  • 8ZHOU W J, WEN J R, MA W Y, et al. A Concentric-Circle Model for Community Mining [ R ]. [ S. l. ] : Technical Report, Microsoft Research, 2002.
  • 9KUMAR R, RAGHAVAN P, RAJAGOPALAN S, et al. Trawling the Web for Emerging Cyber-Communities [ C ] //Proceedings of the 8th International World Wide Web Conference. [ S. l. ] : Elsevier Science B V, 1999 : 56-68.
  • 10POPESCUL A, WILLIAM FLAKE G, LAWRENCE S, et al. Clustering and Identifying Temporal Trends in Document Databases [ C] //IEEE Advances in Digital Libraries, ADL 2000. Washington, DC: IEEE, 2000: 97-105.

同被引文献12

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部