摘要
针对低分辨率SAR图像道路目标的各种特性,利用数学形态学的方法对道路提取进行了研究.首先利用Frost算法对图像进行相干斑抑制;然后采用改进的最大类间方差选取阈值进行分割,得到一个包含道路信息的二值图像;再利用开运算和区域选取除去非道路孤立图斑;接着,利用形态学的闭运算连接断点以及对凹凸不平的道路边缘进行平滑;最后经细化和数次剪枝得到道路。实验结果表明,该方法抗噪性好,效率高,识别道路的效果良好。
In this paper, road characters in the low resolution SAR images and algorithms of mathematical morphology are applied to extract road networks from SAR images successfully . Firstly reduce the speckle noise in the image ; then the improved Method of Maximum Classes Square Error (method of ostu ) is used to get the road image binary image including road information ; secondly remove isolated small areas with morphological opening and area selecting , thirdly connect break-line and smooth the edge of road with morphological closing . Finally , determine the centerline of the road network by Morphological thinning and cropping. Experimental results show that the new Method for detecting road is very effective without the influence of noise .
出处
《微计算机信息》
北大核心
2008年第24期293-294,314,共3页
Control & Automation
基金
福建省自然科学基金资助项目:网格地理信息系统体系结构及其技术研究
福建省科技厅(Z0515003)项目负责人:何建农
关键词
图像分割
数学形态学
道路提取
segmentation
mathematical morphology
road extraction