期刊文献+

C870流处理器上的大型矩阵计算方法

A Large Matrix Calculation Method on C870 Stream Processor
下载PDF
导出
摘要 C870流处理器采用三级存储层次、三级访问模式,其流处理结构特别适合于数据并行性好、全局数据重用较少的计算密集型应用。根据C870流处理器的软硬件结构,针对高度的浮点密集运算、海量数据元素并行计算的问题,本文提出使用计算来隐藏内存访问的延迟,从而提高存储系统的带宽。并首次提出了在C870流处理器上的使用芯片上共享内存(On-chip Shared Memory)的大型矩阵的计算方法,并用5000*5000和2000*2000的方形矩阵进行优化实验,实验结果证明了使用芯片上共享内存优化计算,可以使浮点性能提高7倍多。 C870 stream processor uses three storage levels, three access patterns, the stream structure particularly suited to data parallelism and the overall data reused less compute-intensive applications. The solutions for highly floating point-intensive computing and a large number of data elements parallel computing problems, memory access can use the delay calculation to hide, so as to enhance the bandwidth of system storage. According to the C870 stream processor hardware and software structure, the paper described on the C870 stream processor to use on-chip shared memory to calculate a large matrix, and to use experimental data to prove that the use of the on-chip shared memory of C870 stream processor, can effectively increase the bandwidth of system storage and improve the efficiency of parallel computing.
作者 贾丹 陈庆奎
出处 《微计算机信息》 北大核心 2008年第24期303-305,共3页 Control & Automation
关键词 C870流处理器 矩阵计算 芯片上共享内存 C870 Stream Processor Matrix Calculation On-chip Shared Memory
  • 相关文献

参考文献9

  • 1Khailany B, DallyWJ, KapasiUJ, etal.Imagine: Media Processing with Streams[J]. IEEE Micro, 2001,21(2):35-46.
  • 2Khailany B.The VLSI Implementation and Evaluation of Area and Energy Efficient Stream Media Processor:[ PhD Thesis ][D] . Deptartment of Electrical Engineering,Stanford University,2003.
  • 3Ahn J H ,Dally W J,Khailany B ,etal.Evaluating the Imagine Stream Arehiteeture [A].Proc of the 31st Annual Int'l Syrup on Computer Architecture[C].2004.
  • 4NVIDIA Corporation.NVIDIA CUDA Compute Unified Device Architecture Programming Guide [EB/OL]. [2007-12]. http://www. nvidia.com/object/cuda_get.html
  • 5Victor Podlozhnyuk.Binomial option pricing model [EB/OL]. [2007-04]. http://www.nvidia.com/object/cuda_get.html
  • 6Christian Lessig.Eigenvalue Computation with CUDA [EB/OL]. [2007-10]. http://www.nvidia.com/object/cuda_get.html
  • 7Ignacio Casta?o. High Quality DXT Compression using CUDA [EB/OL].[2007-02]. http://www.nvidia.com/obj ect/cuda_get.html
  • 8Mark Harris.Parallel Prefix Sum (Scan) with CUDA[EB/OL]. [2007-04]. http://www.nvidia.com/obj ect/cuda_get.html
  • 9湛邵斌,陈圣波,揣媛媛,刘海博,轩义华.网格平台构建技术研究[J].微计算机信息,2008,24(6):124-126. 被引量:11

二级参考文献17

  • 1彭斌,袁亚兵.网格计算及其应用发展研究[J].微计算机信息,2006,22(10X):22-24. 被引量:4
  • 2[3]Foster I,Kesselman C.The grid:Blueprint for a new computing in frastructure[M].San Francisco,CA:Morgan Kaufmann Publishers,1998.
  • 3[5]G.Y.Cai,Y.Xue,J.K.Tang,etc,2004.Experience of Remote Sensing Information Modelling with Gridcomputing.Lecture Notes in Computer Science,3039:1003-1010,2004.
  • 4[6]Wang,Y.G.,Xue,Y.,Jianqian Wang,etci,2005,Java-based Grid Service Spread and Implementation in Remote Sensing Applications.Lecture Notes in Computer Science,Vol.3516,pp.496-503.
  • 5[7]Chercenak A,Foster I,Kesselman C,et al.The Data Grid:Towards an Architecture for the Distributed Management and Analysis of Large Scientific Datasets.Journal of Network and Computer Applications,2001:187-200.http://www.eu-datagrid.org/
  • 6[9]Romberg,Mathilde.The UNICORE Grid infrastructure.Scientific programming,2002,10(2)s.149 Special Issue on Grid Computing
  • 7[10]http://www.dutchgrid.nl
  • 8[11]http://www.osi.ie/pdf/irish_grid.pdf
  • 9[12]Foster I.What is the grid? A three-point checklist[J].Grid Today-Daily News and Information For the Global Grid Community,2002,1(6):32-36.
  • 10[14]http://www.ubuntu.com

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部