期刊文献+

具有垂直传染和预防接种的SIVR模型的研究 被引量:4

Analysis of an SIVR Model with Vertical Infection and Precautionary Vaccination
下载PDF
导出
摘要 考虑了垂直传染和预防接种的因素对传染病流行的影响,建立了一个具有急慢性阶段的SIVR模型,讨论了系统的可行域,研究了系统平衡点的稳定性,得到了平衡点全局稳定的充分条件。最后进行数值模拟。 An SIVR epidemic model with acute and chronic infection stages is considerd which is considerd the factors of vertical infection and precautionary vaccination. The feasible region of the model is obtained and studied the stability of the equilibriums. Sufficient conditions for the globally asymptotical stability of the endemic equilibrium are established. At last, a numerical simulation to test and verify the conclusions is given.
出处 《科学技术与工程》 2008年第15期4051-4054,4059,共5页 Science Technology and Engineering
基金 国家自然科学基金项目(10671011)资助
关键词 SIVR模型 可行域 平衡点 稳定性 数值模拟 SIVR model feasible region equilibrium stability numerical simulations
  • 相关文献

参考文献6

  • 1[1]Reade B,Bowers R,Begon M.A model of disease and vaccination for infections with acute and chronic phasea.Theoretical Biology,1998; 190:355-370
  • 2[2]Maia M,Carlos C.Diseases with chronic stage in a population with varying size.Mathematical Bioscience,2003; 182:1-25
  • 3李学志,王世飞.具有急慢性阶段的SIS流行病模型的稳定性[J].应用数学学报,2006,29(2):282-296. 被引量:9
  • 4成小伟,胡志兴.具有常数移民和急慢性阶段的SIS模型的研究[J].北京工商大学学报(自然科学版),2008,26(1):75-79. 被引量:3
  • 5[5]Li M Y,Muldowney J S.A geometric approach to global-stability problems.Mathematical Analysis,1996; 27 (4):1070-1083
  • 6[6]Martin Jr R H.Logarithmicnorms and projections applied to linear differential systems.Mathematical Analysis and Applications,1974; 45:432-454

二级参考文献9

  • 1李学志,王世飞.具有急慢性阶段的SIS流行病模型的稳定性[J].应用数学学报,2006,29(2):282-296. 被引量:9
  • 2Reade B, Bowers R, Begon M. A model of disease and vaecination for infections with acute and chronic phasea [J]. Theoretical Biology, 1998, 190:355 - 370.
  • 3Maia M, Carlos C. Diseases with chronic stage in a population with varying size [J ], Mathematical Bioscience, 2003, 182: 1-25.
  • 4Thieme H R. Persistence under relaxed point-dissipativity with applications to an epidemic model[J]. Mathematical Analysis, 1993, 24. 407 - 435.
  • 5Li M Y, Muldowney J S. A geometric approach to global-stability problems[J]. Mathematical Analysis, 1996,27 (4): 1070 - 1083.
  • 6Li M Y, Wang L C, Global stability in some SEIR epidemic models[J]. Institute of Mathematics and its Applications, 2002, 126:295 - 311.
  • 7Muldowney J S. Compound matrices and ordinary differential equations[J]. Rocky Mount J Math, 1990, 20: 857 - 872.
  • 8Martin Jr RH, Logarithmicnorms and projections applied to linear differential systems [J].Mathematical Analysis and Applications, 1974, 45 : 432 - 454.
  • 9Geni Gupur.Existence and Uniqueness of Endemic States for the Age-structured MSEIR Epidemic Model[J].Acta Mathematicae Applicatae Sinica,2002,18(3):441-454. 被引量:6

共引文献9

同被引文献17

  • 1付景超,井元伟,张中华,张嗣瀛.具垂直传染和连续预防接种的SIRS传染病模型的研究[J].生物数学学报,2008,23(2):273-278. 被引量:33
  • 2张玉兰.接种乙肝疫苗能管多久[J].人人健康,2006(3):25-25. 被引量:1
  • 3杨建雅,张凤琴.一类具有垂直传染的SIR传染病模型[J].生物数学学报,2006,21(3):341-344. 被引量:22
  • 4Juan Zhang, Zhien Ma. Global dynamics of an SEIR epidemic model with saturating contact rate[J]. Mathematical Biosciences, 2003, 185(1):15- 32.
  • 5Xue-Zhi Li, Lin-Lin Zhou. Global stability of an SEIR epidemic model with vertical transmission and saturating contact rate[J]. Chaos, Solitons and Fractals, 2009, 40(2):874- 884.
  • 6Moghadas S M, Gumel A B. A mathematical study of a model for childhood diseases with non-permament immunity[J]. Journal of Computational and Applied Mathematics, 2003, 157(2):347 363.
  • 7Tapaswi P K, Chattopadhyay J. Global stability results of a "susceptible-infeetiveqmmune- susceptible" (SIRS) epidemic model [J]. Ecological Modelling, 1996, 87(3):223 226.
  • 8ANDREI KOROBEINIKOV. Lyapunov functions and global properties for SEIR and SEIS epidemic mod- els[J] .Mathematical Medicine and Biology, 2004, 21(2):75-83.
  • 9P.van den Driessche, James Watmough. Reproduction numbers and sub-threshold epidemic equilibria for compartmental models of disease transmission[J]. Mathematical Biosciences, 2002, 180, 29-48.
  • 10殷蓉蓉,胡志兴.具有隔离接种且传染率为非线性的传染病模型的稳定性[J].北京工商大学学报(自然科学版),2009,27(3):74-77. 被引量:2

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部