期刊文献+

细乳液聚合及纳米粉体在防水涂料中的应用

Application of miniemulsion polymerization and nanometer powder in waterproofing coating
下载PDF
导出
摘要 选用硅丙乳液作为防水涂料的主要成膜物质;考察不同分散剂对纳米粉体在水溶液中分散性能的影响,结果表明,采用复合分散剂[m(R-30A)∶m(STPP)=1∶1]时分散性能最佳;研究超声波分散对细乳液液滴粒径及纳米悬浮分散体稳定性的影响,结果显示,超声分散50min,细乳液液滴粒径可降为90nm,超声分散20min,纳米悬浮分散体的黏度和沉降体积有一最小值;纳米复合防水涂料的拉伸强度和延伸率在纳米粉体ZnO和TiO2的掺量为3%左右时出现最大值;比较未掺纳米粉体与掺3%纳米ZnO和3%纳米TiO2的防水涂料的光老化性能,结果表明,未掺纳米粉体的防水涂料紫外光照射前后力学性能明显降低,而掺纳米粉体的防水涂料力学性能变化不大。 Silicone-acrylic latex was selected as main film-forming substance for water proofing coating. Explore the effect of dispersion properties of nanometer powder in aqueous solution with different dispersant.The investigation showed that the dispersion property is the best when use composites dispersant [m(R-30A);m(STPP)=1;1];The effect of ultrasonic dispersion on droplet diameter and the stahility of nano particle suspension was studied. The result indicated that ultrasonic dispersion for 50 minutes,droplet diameter of miniemulsion is holding down to 90nm. There is a minimum value of viscosity and settlement volume for nano particle suspension when ultrasonic dispersion for 20 minutes. There is a maximum value of tension strength and elongation of nano composites waterproofing coating by amount of nanometer powder ZnO about 3% and amount of nanometer powder TiO2 about 3%. light aging characteristics between waterproofing coatings with and without nanometer powder is compared. The result showed that the mec, hanieal properties of waterproofing coating without nanometer powder decline noticeably and that of waterproofing coating with nanometer powder have little change before and after ultraviolet illumination.
作者 王孝科 田敉
出处 《新型建筑材料》 北大核心 2008年第8期56-59,共4页 New Building Materials
关键词 细乳液聚合 防水涂料 纳米ZNO 纳米TIO2 分散 miniemulsion polymerization waterproofing coating nanometer ZnO nanometer TiO2 dispersion
  • 相关文献

参考文献7

二级参考文献69

  • 1[1]Ugelstad J, El-Aasser M S, Vanderhoff J W. J. Polym. Sci. Polym. L ett., 1973, 11: 503~513.
  • 2[3]Delgado J, El-Aasser M S, Vanderhoff J W. J. Polym. Sci., Part A: Polym. Chem., 1986, 24: 861~874.
  • 3[4]Wang C C, Yu N S, Chen C Y, et al. J. Appl. Polym. Sci., 1996, 60: 49 3~501.
  • 4[5]Leiza J R, Sudol E D, El-Aasser M S. J. Appl. Polym. Sci., 1997, 64: 179 7~1809.
  • 5[6]Nelliappa V, El-Aasser M S, Klein A, et al. J. Polym. Sci., Part A: Polym. Chem., 1996, 34: 3173~3181.
  • 6[7]Nelliappan V, El-Aasser M S, Klein A, et al. J. Polym. Sci., 1996, 3 4: 3183~3190.
  • 7[8]Huang H H, Zhang H T,Li J Z, et al. J. Appl. Polym. Sci., 1998, 68: 2 029~2039.
  • 8[9]Choi Y T, El-Aasser M S, Sudol E D, et al. J. Polym. Sci., Polym. Ch em.Ed., 1985, 23: 2973~2978.
  • 9[10]Fontnot K, Schork F J. J. Appl. Polym. Sci., 1993, 49: 633~655.
  • 10[11]Samer C J, Joseph Schork F. Ind. Eng. Chem. Res, 1999, 38: 1801~1807.

共引文献144

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部