期刊文献+

Inter-hemispheric comparison of climate change in thelast millennium based on the ECHO-G simulation 被引量:3

Inter-hemispheric comparison of climate change in the last millennium based on the ECHO-G simulation
原文传递
导出
摘要 The commonality and difference in the variations of temperature and precipitation between the Northern Hemisphere (NH) and Southern Hemispheres (SH) in the last millennium are investigated by analysis of the millennium simulation with the ECHO-G coupled climate model. The NH mean temperature variations are generally consistent with those of the SH counterpart on the interannual, decadal and centennial time scales. But, the transition times between the medieval warm period (MWP), the little ice age (LIA), and the present-day warm period (PWP) in the NH leads that in the SH; and the anomaly amplitude in the NH is significantly larger than the SH counterpart. For the precipitation variations, the NH mean precipitation varies in-phase with the SH mean precipitation on decadal and centennial scales (mainly in the mid-high latitudes) but out-of-phase on the interannual scale (mainly in the low latitudes). During the MWP the warming has comparable amplitude in the NH and SH; however, during the PWP the NH warming is considerably stronger than the SH warming. Further, the present-day temperature rises in the NH high latitudes but decreases in the SH high latitudes, which is very different from the warming pattern during the MWP. Since during the MWP the greenhouse gases (GHG) concentration stayed at a low level, we infer that the present-day opposite temperature tendency in the high latitudes between the two hemispheres may be related to the increase of the GHG concentration. The commonality and difference in the variations of temperature and precipitation between the Northern Hemisphere (NH) and Southern Hemispheres (SH) in the last millennium are investigated by analysis of the millennium simulation with the ECHO-G coupled climate model. The NH mean temperature variations are generally consistent with those of the SH counterpart on the interannual, decadal and centennial time scales. But, the transition times between the medieval warm period (MWP), the little ice age (LIA), and the present-day warm period (PWP) in the NH leads that in the SH; and the anomaly amplitude in the NH is significantly larger than the SH counterpart. For the precipitation variations, the NH mean precipitation varies in-phase with the SH mean precipitation on decadal and centennial scales (mainly in the mid-high latitudes) but out-of-phase on the interannual scale (mainly in the low latitudes). During the MWP the warming has comparable amplitude in the NH and SH; however, during the PWP the NH warming is considerably stronger than the SH warming. Further, the present-day temperature rises in the NH high latitudes but decreases in the SH high latitudes, which is very different from the warming pattern during the MWP. Since during the MWP the greenhouse gases (GHG) concentration stayed at a low level, we infer that the present-day opposite temperature tendency in the high latitudes between the two hemispheres may be related to the increase of the GHG concentration.
出处 《Chinese Science Bulletin》 SCIE EI CAS 2008年第17期2692-2700,共9页
基金 the Innovation Project of Chinese Academy of Sciences (Grant No. KZCX2-YW-319) the National Basic Research Program of China (Grant No. 2004CB720200) the National Natural Science Foundation of China (Grant Nos. 40475035 and 40672210)
关键词 气候变化 中世纪温暖期 一千年 温度 降水 climate change, last millennium, medieval warm period, little ice age, present-day warm period, inter-hemispheric comparison
  • 相关文献

参考文献9

二级参考文献132

共引文献1810

同被引文献61

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部