期刊文献+

智能搜索引擎中个性化信息检索技术研究 被引量:4

Research on the Personalized Information Retrieval in Intelligent Search Engine
下载PDF
导出
摘要 信息检索的一个难点是构造一个可以精确表达用户信息需求的检索式。个性化信息检索从某种程度上促进了这个问题的解决,它把用户区别对待,认识到了用户之间的不同之处,它为不同的用户提供不同的服务,以满足不同的需求。从智能搜索引擎中的个性化信息检索服务的角度出发,对其中用户建模的关键技术进行了研究,使用向量空间模型来表示网页和用户兴趣模型,并在此基础上,根据用户浏览网页的日志信息,通过隐性反馈技术,动态地调整用户模型,使用户模型的质量更高、描述用户的兴趣偏好更准确。经过模拟实验验证,该个性化检索算法能够有效地提高检索的查准率,并且具有良好的适应性。 The crucial technology of information retrieval is to construct a query formulation that can describe user' s real requirement precisely. Personalized information retrieval can resolve this issues to some extent, it realized the differences of users, provides the different service for the different user, satisfies the different need. Embarks from the intelligent search engine personalized information retrieval service angle, conducts the research to the user profile modelling essential technology, expresses the web pages and the user interest profile using vector space model methods, and based on this, the recessive feedback technology, according to the log information of the user browsing web pages, through dynamic adjusts the user profile, makes it more precisely. Experiment indicates this personalized information retrieval algorithm can effectively enhance the accuracy, and has the good adaptation.
出处 《科学技术与工程》 2008年第17期5046-5049,共4页 Science Technology and Engineering
关键词 个性化 信息检索 用户兴趣模型 向量空间模型 personalized information retrieval user interest profile vector space model
  • 相关文献

参考文献4

  • 1[1]Martin-Bautista M J Kraft D H,Vila M A,et al.User Profiles and fuzzy logic for Web retrieval issues.Soft Computing,2003;6:365-372
  • 2吴丽花,刘鲁.个性化推荐系统用户建模技术综述[J].情报学报,2006,25(1):55-62. 被引量:104
  • 3[3]Pazzani M,Billsus D.Learning and revising user profiles:the identification of interesting Web sites.Machine Learning,1997;27:313-331
  • 4[5]Harman D.Relevance feedback revisited.In:Proceedings of ACM SIGIR 1991.International Conference on Research and Development in Information Retrieval,1992:1-10

二级参考文献42

  • 1Kim,BD,Kim,SO.A new recommender system to combine content-based and collaborative filtering systems.Journal of Database Marketing,2001,6(3):244 ~ 252
  • 2Mukherjee,R,Sajja,N.Sen.S.A Movie recommendation system-an application of voting theory in user modeling.User Modeling and User-Adapted Interaction,2003,13:5 ~ 33
  • 3Zaiane,OR.Building a recommender agent for e-learing systems.2002 International Conference on Computers in Education.2002,55 ~ 59
  • 4Moukas,A.Amalthaea:Information Filtering and Discovery Using a Multiagent Evolving System.Journal of Applied AI,1997,11(5):437 ~ 457
  • 5Asnicar,F,Tasso,C.IfWeb:A Prototype of User Models Based Intelligent Agent for Document Filtering and Navigation in the World Wide Web.In:Proceedings of UM' 97.Sardinia:Chia Laguna,1997
  • 6Park,YW,Lee,ES.A New Generation Method of a User Profile for Information Filtering on the Internet.In Proceedings of the 13th International Conference on Information Networking.Washington,DC:IEEE Computer Society,1998,261 ~ 264
  • 7Mooney,RJ,Roy,L.Content-based Book Recommending Using Learing for Text Categorization.In Proceedings of the fifth ACM conference on Digital Libraries.New York:ACM Press,2000,195 ~ 204
  • 8Lieberman,H.,Letizia:An agent that assists web browsing.In Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence(IJCAI-95).Montreal:Morgan Kanfmann,1995,924 ~ 929
  • 9Pretschner,A,Gauch,S.Ontology Based Personalized Search.In:Proceedings of 11th IEEE Intl.Conf.on Tools with Artificial Intelligence.1999,391 ~ 398
  • 10Mladenic,D.Personal WebWatcher:Implementation and Design.Technical Report,IJS-DP-7472,Pittsburgh:Carnegie Mellon University,1996

共引文献103

同被引文献28

  • 1张延国.基于搜索引擎的个性化知识推送系统[J].中国信息导报,2004(6):60-61. 被引量:17
  • 2吴丽花,刘鲁.个性化推荐系统用户建模技术综述[J].情报学报,2006,25(1):55-62. 被引量:104
  • 3刘里,何中市.基于关键词语的文本特征选择及权重计算方案[J].计算机工程与设计,2006,27(6):934-936. 被引量:12
  • 4刘远超,王晓龙,徐志明,关毅.文档聚类综述[J].中文信息学报,2006,20(3):55-62. 被引量:65
  • 5Baidu百科.搜索引擎[EB/OL].[2009-02-01].http://baike.baidu.com/view/1154.htm.
  • 6G. W. Fumas, T.K. Landau T. M. Gomez, S.T. Domains. The vocabulary problem in human -system communication Communication of ACM[J], 1987, 30(11):946-971.
  • 7Passaic, Billbugs. Learning and revising user profiles: the identification of interesting Web sites. Machine Learning [J], 1997; 27:313--331.
  • 8殷人昆,数据结构.清华大学出版社[M].2006.11.346-392.
  • 9Lieberman, H. Leticia an agent that assists web browsing .In: Burke, R., ed. Proceedings of the International joint Conference on Artificial Intelligence. Menlo Park [J], CA: AAAI Press.1995.924- 929.
  • 10SAVARESI S M,BOLEY D.On the performance of bisecting k-means and PDDP[C].Proceedings of the 1st SIAM International Conference on DataMining, 2001 : 1-14.

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部