期刊文献+

不同重力下薄燃料表面火焰传播的相似性 被引量:2

Comparability of Flame Spread over Thin Solid Fuel Surface Under Different Gravities
下载PDF
导出
摘要 利用数值模拟方法,研究了不同重力下有限空间内薄燃料表面逆风传播火焰的相似性.结果表明,通道高度的变化,通过影响通道间的流场和壁面的热损失,来影响通道内燃料表面的火焰传播,因此用水平窄通道模拟微重力下大空间内的火焰传播,只能得到定性相似但定量差别较大的结果,这与他人的实验结果一致.在微重力和常重力下的窄通道中,当Grashof准数足够小时(200可以作为一个定性参考值),其中的自然对流基本可以忽略,不同重力下窄通道中的火焰传播过程基本相似. The comparability of opposed-flow flame spread over thin solid fuels in finite spaces in different gravities was numerically simulated. The results show that the variation of the channel height affects the velocity profile of flow field in the channel and heat loss at the wall of the channel, and further, flame spread over solid fuels in the finite spaces. Therefore, using a horizontally narrow channel in normal gravity to simulate flame spread in large space in microgravity can only yield qualitatively similar but quantitatively different results. Which is consistent with the previous experimental results. In the process of flame spread in the narrow channel in normal gravity and microgravity, when Grashof number is low enough(200 can be taken as a qualitative reference value ) , natural convection can be ignored and flame spread processes in different gravities will be comparable.
作者 张夏 于勇
出处 《燃烧科学与技术》 EI CAS CSCD 北大核心 2008年第4期289-294,共6页 Journal of Combustion Science and Technology
基金 国家自然科学基金资助项目(10702009) 中国科学院知识创新工程重要方向资助项目(KJCX2-SW-L05)
关键词 微重力 薄燃料 火焰传播 地面模拟 相似性 microgravity thin solid fuel flame spread ground simulation comparability
  • 相关文献

参考文献18

  • 1张夏.载人航天器火灾安全研究进展[J].力学进展,2005,35(1):100-115. 被引量:21
  • 2National Aeronautics and Space Administration. NASA STD-6001 Flammability, Odor, Offgassing, and Compatibility Requirements and Test Procedures for Materials in Environments That Support Combustion[S]. Washington, DC: National Aeronautics and Space Administration, 1998.
  • 3Olson S L, Kashiwagi T, Fujita O, et al. Experimental observations of spot radiative ignition and subsequent three-dimensional flame spread over thin cellulose fuels [ J ]. Cornbust Flame, 2001, 125( 1/2): 852-864.
  • 4Wichman I S. Theory of opposed-flow flame spread [ J ]. Prog Energy Combust Science, 1992, 18(6) : 553-593.
  • 5deRis J N. Spread of a laminar diffusion flame [ C ] // Twelfth Syrup ( Int ) on Comb. Pittsburgh: The Combust Institute, 1968 : 241-252.
  • 6Delichatsios M A. Exact solution for the rate of creeping flame spread over thermally thin materials [ J ]. Combust Science Technology, 1986, 44(5/6): 257-267.
  • 7Frey Jr A E, Tien J S. A theory of flame spread over a solid fuel including finite-rate chemical kinetics [ J ]. CombustFlame, 1979, 36: 263-289.
  • 8Altenkirch R A, Eichhorn R, Shang P C. Buoyancy effects on flames spreading down thermally thin fuels [ J ]. Combust Flame, 1980, 37: 71-83.
  • 9Fernandez-Pello A C, Ray S R, Glassman I. Flame spread in an opposed forced flow: The effect of ambient oxygen concentration[C] // Eighteenth Symp ( Int) Comb. Pittsburgh: The Combust Institute, 1980: 579-589.
  • 10Olson S L. Mechanisms of microgravity flame spread over a thin solid fuel--Oxygen and opposed flow effects [ J ]. Cornbust Science Technology, 1991, 76(4/5/6): 233-249.

二级参考文献148

  • 1姜羲,范维澄.微重力条件下气固两相界面耦合燃烧的数值模拟[J].中国科学技术大学学报,1994,24(4):449-455. 被引量:3
  • 2Honda L K, Ronney P D. Mechanisms of concurrent-flow flame spread over solid fuel beds. Proc Comb Inst, 2000,28:2793~2801
  • 3Feier I I, Shih H-Y, Sacksteder K R, et al. Upward flame spread over thin solids in partial gravity. Proc Comb Inst,2002, 29:2569~2577
  • 4Ferkul P V, T'ien J S. A model of low-speed concurrent flow flame spread over a thin fuel. Comb Sci Tech, 1994, 99(4-6):345~370
  • 5Jiang C B, Tien J S, Shih H Y. Model calculation of steady upward flame spread over a thin solid in reduced gravity. In:Twenty-Sixth Symp (Int) Comb. Pittsburgh: The Comb Inst, 1996. 1353~1360
  • 6Di Blasi C. Dynamics of concurrent flame spread over a thin charring solid in microgravity. Fire Mater, 1998, 22(3):95~101
  • 7Kumar A, Shih H Y, T'ien J S. A comparison of extinction limits and spreading rates in opposed and concurrent spreading flames over thin solids. Comb Flame, 2003, 132(4):667~677
  • 8Bhattacharjee S, Altenkirch R A, Olson S L. Heat transfer to a thin solid combustible in flame spreading at microgravity.Trans ASME- J Heat Transfer, 1991, 113(3): 670~676
  • 9Bhattacharjee S, Altenkirch R A. Radiation-controlled,opposed-flow flame spread in a microgravity environment.In: Twenty-Third Symp (Int) Comb. Pittsburgh: The Comb Inst, 1990. 1627~1633
  • 10Rhatigan J L, Bedir H, T'ien J S. Gas-phase radiative effects on the burning and extinction of a solid fuel. Comb Flame,1998, 112(1-2): 231~241

共引文献20

同被引文献25

  • 1孔文俊,劳世奇,张培元,张孝谦.功能模拟微重力下导线的可燃性[J].燃烧科学与技术,2006,12(1):1-4. 被引量:11
  • 2陈丽芬,辛喆,孔文俊,劳士奇,张孝谦.地面模拟静止微重力环境中导线先期着火特性研究[J].空间科学学报,2006,26(3):235-240. 被引量:5
  • 3张夏.微重力下薄燃料表面火焰传播的地面窄通道模拟[J].力学学报,2007,39(4):466-472. 被引量:3
  • 4Friedman R. Testing and selection of fire-resistant materials for spacecraft use. NASA TM-209773, 2000.
  • 5Friedman R. Risks and issues in fire safety on the space station. NASA TM-106430, 1994.
  • 6Friedman R. Fire safety in extraterrestrial environments. NASA TM-207417, 1998.
  • 7Friedman R, Gokoglu S A, Urban D L. Microgravity combustion research: 1999 program and results. NASA TM-209198, 1999.
  • 8Limero T, Wilson S, Perlot S, et al. The role of environmental health system air quality monitors in space sl:ation contingency operations. SAE Transactions, 1992, 101:1521-1526.
  • 9Greenberg P S, Sacksteder K R, Kashiwagi T. Wire insulation flammability experiment: USML-1 1 year post mission summary. In: Proceedings of the joint launch plus one year science review of USML-1 and USMP-1 with the microgravity measurement group. Huntsville USA, 1993.631-655.
  • 10Greenberg P S, Sacksteder K R, Kashiwagi T. The USML-1 wire insulation flammability glove box experiment. In: The 3rd International Microgravity Combustion Workshop. Cleveland, USA, 1995.25-30.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部