期刊文献+

辐射对CO/H_2/N_2燃料反向对撞扩散火焰结构的作用(英文)

Effects of Radiation on the Structure of Opposed-Flow Diffusion Flames with CO/H_2/N_2 Fuel
下载PDF
导出
摘要 考虑和不考虑辐射作用,在宽广的拉伸率条件下,计算研究了组分CO、H2和N2摩尔分数分别为40%、30%和30%的燃料与空气(79%N2和21%O2)的详细层流对撞火焰结构.使用固有流形分析技术,考虑Leeds氮化学等,对Liu和Rogg发展的38步机理进行了修改.为研究辐射自吸收的作用,采用光细辐射模型(OTM)和窄带辐射模型(NBM),模型计算结果与D rake等的测量结果吻合良好. The detailed structure of laminar oppose&flow diffusion flames with a fuel composition of 40% CO, 30% H2, and 30% N2 and an oxidizer composition of 79% N2 and 21% O2 has been calculated with and without considering effects of radiation over a wide range of stretch conditions respectively. Based on the 38-step mechanism developed by Liu and Rogg taking into account, the Leeds mechanism for the nitrogen chemistry and other needed channel reactions the mechanism was modified by using intrinsic manifolds analysis. To compare the effects with and without considering the radiation self-absorption, two radiative models, optically thin model (OTM) and narrow-band model (NBM), were adopted in the calculations. The detailed model calculations show agreement with the previous experimental measurements by Drake et al.
出处 《燃烧科学与技术》 EI CAS CSCD 北大核心 2008年第4期338-344,共7页 Journal of Combustion Science and Technology
基金 国家自然科学基金资助项目(5053603050676091) 教育部新世纪优秀人才支持计划资助项目(NCET-06-0546) 国家科技支撑计划专题资助项目(2006BAK06B04-2) 中国科学技术大学青年科学基金资助项目(KA2320000005)
关键词 层流反向对撞扩散火焰 辐射 火焰结构 模化 laminar opposed-flow diffusion flame radiation flame structure modeling
  • 相关文献

参考文献9

  • 1Weiming L, Tong T W, Dobranich D, et al. A combined narrow and wide-band model for computing the spectral absorption coefficient of CO2, CO, H2O, CH4, C2H2, and NO [ J ]. Journal of Quantitative Spectroscopy and Radiative Transfer, 1995, 54(6): 961-970.
  • 2Qin x, Chen Z, Ju Y. Experimental and numerical study of spectral dependent radiation reabsorption on flame propagation [ C]// 43rd Aerospace Sciences Meeting and Exhibit. Reno, Nevada, 2005: 10-13.
  • 3Sung C J, Liu J B, Law C K. Structural response of counterflow diffusion flames to strain rate variations [ J ]. Combustion and Flame, 1995, 102(4) : 481-492.
  • 4Thomsen D D, Laurendeau N M. LIF measurements and modeling of nitric oxide concentration in atmospheric counterflow premixed flames [J]. Combustion and Flame, 2001, 124(3) : 350-369.
  • 5Drake M C, Blint R J. Thermal NOx in stretched laminar opposed-flow diffusion flames with CO/H2/N2 fuel [ J ]. Combustion and Flame, 1989, 76(2) : 151-167.
  • 6Drake M C, Blint R J. Relative importance of nitric oxide formation mechanisms in laminar, opposed-flow diffusion flames [ J]. Combustion and Flame, 1991, 83 (1/2) : 185 -203.
  • 7Park J, Lee K, Lee E. Effects of ambient pressure on flame structure of CO/H2/N2 conterflow diffusion flame [J]. International Journal of Energy Research, 2001, 25 ( 3 ) : 187-205.
  • 8JIANGYong QIURong FANWeicheng.A kinetic modeling study of pollutant formation in premixed hydrocarbon flames[J].Chinese Science Bulletin,2005,50(3):276-281. 被引量:6
  • 9Frenklach M, Wang H, Goldenberg M, et al. GRI-Mech-An Optimized Detailed Chemical Reaction Mechanism for Methane Combustion [ R]. Chicago: GRI Technical Report, GRI-95/0058, 1995.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部