期刊文献+

天然气混合催化燃烧特性 被引量:1

Characteristics of Hybrid Catalytic Combustion of Natural Gas
下载PDF
导出
摘要 利用二次补燃技术研究天然气催化燃烧过程中的NOx、未燃碳氢(UHC)和CO排放及载体出口端温度的变化,找出适当的一次、二次燃料配比,使其产生最佳的排放效果.实验表明,适当的二次补燃有助于减少NOx排放,而CO、UHC排放仍旧维持较低水平.但随着二次补气量的增加,尽管NOx排放量变化不大,但当二次补气量超过某值时,CO、UHC排放会有所增加.研究还表明,二次补燃可以降低蜂窝陶瓷载体温度,避免了载体由于受到高温产生的热应力而导致的破裂以及催化剂由于高温而失效. Secondary natural gas supply was used to study emissions such as NOx, CO and unburned hydrocarbon (UHC) and the temperature at the outlet of catalytic monolith as well. The suitable proportion of first fuel supply to the secondary was found for lower combustion emissions. The experimental results showed that the appropriate secondary fuel supply helped to reduce NOx emission, while CO and UHC emissions still remained low. However, with the increase of secondary fuel supply, though NO~ emission almost kept uncharged, CO and UHC emissions constantly increased when the secondary fuel volume was more than a certain amount. Meanwhile, the experiments also showed that the secondary fuel supply reduced the temperature in the catalytic monolith, which helped to protect the catalytic monolith from fracture caused by high heat stress and from deactivation of catalyst caused by high temperature.
出处 《燃烧科学与技术》 EI CAS CSCD 北大核心 2008年第4期378-383,共6页 Journal of Combustion Science and Technology
基金 中国博士后基金资助项目(20070410518) 北京市拔尖人才计划资助项目
关键词 二次补燃 催化燃烧 天然气 载体 排放 secondary fuel supply catalytic combustion natural gas monolith emissions
  • 相关文献

参考文献12

  • 1Pfefferle W C. Catalytically Supported Thermal Combustion: USA,814752[ P]. 1974.
  • 2Sadamori H. Application concept and evaluation of smallscale catalytic combustors for natural gas [ J]. Catalysis Today, 1999, 47: 325-338.
  • 3Moallemi F, Batley G, Foster T J, et al. Chemical modolling and measurements of the catalytic combustion of CH4/air mixtures on platinium and palladium catalysts [ J]. Catalysis Today, 1999, 47: 235-244.
  • 4Persson K, Pfefferle Lisa D, Schwartz W, et al. Stability of palladium-based catalysts during catalytic combustion of methane [ J ]. Applied Catalysis A, 2007, 74 ( 3/4 ) : 242-250.
  • 5Basini L. Fuel rich catalytic combustion: Principles and technological developments in short contact time (SCT) catalytic processes [J]. Catalysis Today, 2006, 117(4): 384-393.
  • 6Jannasch A K, Silversand F, Berger M, et al. Development of a novel catalytic burner for natural gas combustion for gas stove and cooking plate applications [ J ]. Catalysis Today, 2006, 117(4) : 433-437.
  • 7Eriksson S bustion of Wolf M, Schneider A. Fuel-rich catalytic commethane in processes [ J ]. Catalysis zero emissions power generation Today, 2006, 117(4): 447-453.
  • 8Han J, Zemlyanov D Y, Ribeiro F H. Catalytic combustion of methane on palladium single crystals [ J ]. Catalysis Today, 2006, 117 (4) : 506-513.
  • 9Andrae J C G, Johansson D, Bursell M, el al. High-pressure catalytic combustion of gasified biomass in a hybrid combustor [ J ]. Applied Catalysis A, 2005, 293 ( 28 ) : 129-136.
  • 10林鹏云,罗永浩,陆方.天然气再燃降低燃煤锅炉NO_x排放的研究[J].动力工程,2006,26(1):149-152. 被引量:8

二级参考文献1

共引文献7

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部