期刊文献+

一种基于并行覆盖前馈优先神经网络的说话人识别方法 被引量:2

Research on Speaker Recognition Based on the Parallel Coverage of Priority Ordered Neural Network
下载PDF
导出
摘要 为实现对说话人特征空间多聚类区的有效识别,提出一种基于并行覆盖前馈优先级网络(PCPONN)的说话人识别方法。该方法以LBG算法生成每个说话人特征空间初始的聚类中心,对本类样本按聚类中心分类后,用前馈优先级神经网络(PONN)对每个聚类区进行并行覆盖。相关实验证明,PCPONN符合说话人特征空间点的分布特点,得到更好的稳定性和更高的识别率。 In order to realize the effective coverage of multiple clusters area in the speaker's feature space,a method of parallel coverage of priority ordered neural network (PCPONN) is put forward. Based on the initial clusters center generated by the LBG in every speaker's feature space, every sample can be classified, so every clusters area can be parallel covered by the PONN. The relative experiment results show PCPONN is consistent with the distribution of speaker' s feature point, so has better stability and higher correct recognition.
出处 《计算机科学》 CSCD 北大核心 2008年第8期125-128,共4页 Computer Science
基金 国家自然科学基金资助项目(60475019)
关键词 说话人识别 并行前馈优先级网络(PCPONN) 倒谱 聚类区 Speak recognition,Parallel coverage of priority ordered neural network(PCPONN) ,Cepstrum,Clusters area
  • 相关文献

参考文献8

  • 1Zhang Y B, Zhou J. Audio Segmentation Based on Multi-scale Audio Classification[C]//Proc. ofIEEE ICASSP. 2004 : 349-352.
  • 2Reynolds D A. Speaker identification and verification using Gaussian mixture. Speech Communication, 1995,17 : 19-108.
  • 3Zhang Xinyi, Optimum Vector Quantization Codebook Design for peaker Recognidon[C]//Proc of the ICSP. 2004:1397-1402.
  • 4王守觉.仿生模式识别(拓扑模式识别)——一种模式识别新模型的理论与应用[J].电子学报,2002,30(10):1417-1420. 被引量:151
  • 5Wang Showjue. Priority Ordered Neural Networks with Better Similarity to Human Knowledge Representation[J]. Chinese Journal of Electronics, 1999,8 ( 1 ) : 1-4.
  • 6Zolnay A, SchlAuter R, Ney H. Acoustic Feature Combination for Robust Speech Recognition//IEEE Int. Conf. on Acoustics, Speech, and Signal Processing. Philadelphia, PA, March 2005.
  • 7王守觉,潘晓霞,徐春燕,陈旭,安冬,曹文明.一种基于高维空间覆盖动态搜索方法的非特定人连续数字语音识别的研究[J].电子学报,2005,33(10):1790-1793. 被引量:7
  • 8Reynolds D A. Experimental evaluation of features for robust speaker identification pl. IEEE Trans. Speech and Audio Proc. , 1994,10(2) : 639-643.

二级参考文献17

  • 1王守觉,徐春燕,潘晓霞,安冬,陈旭,曹文明.为连续语音识别用的单词音节神经网络建模的研究[J].电子学报,2005,33(10):1883-1885. 被引量:4
  • 2Fisher R.A.Contributions to Mathematical Statistics [M].New York:J.Wiley,1952.
  • 3陈季镐(美)著,邱炳章,邱华译.统计模式识别 [M].北京:北京邮电学院出版社,1989.
  • 4Vapnik V.N and Chervonenkis A.Ja.Theory of Pattern Recognition [M].Nauka,Moscow,1974.
  • 5Boser B,Guyon I and Vapnik V.N.A training algorithm for optimal margin classifirers [A].Fifth Annual Workshop on Computational Learning Teory [C].Pittsburgh:ACM,1992.144-152.
  • 6A D 亚历山大洛夫等著,王元等译.数学--它的内容、方法和意义 [M].北京:科学出版社,2001.
  • 7Ryszard Engelking.Dimension Theory [M].PWN-Polish Scientific Publishers-Warszawa,1978.
  • 8L R Rabiner.A tutorial on hidden Markov models and selected applications in speech recognition[J].Proceedings of the IEEE,1989,77(2):257-286.
  • 9R J Mammone,X Zhang,R P Ramachandran.Robust speaker recognition:A feature-based approach,IEEE Signal Processing[J].1996(13):58-71.
  • 10VladimirNVapnik著 张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000,9..

共引文献151

同被引文献62

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部