期刊文献+

基于概率神经网络说话人识别的算法研究 被引量:2

Study of PNN speaker recognition
下载PDF
导出
摘要 为实现由语音信号进行说话人身份的辨识,研究了以往的实现说话人辨认的系统,提出一种改进的算法,采用能够反映人对语音感知特性的Mel频率倒谱系数(MFCC)作为特征参数,即基于概率神经网络(PNN)的识别方法。经实测数据的处理,表明PNN对训练样本有很高的分类准确率,且对测试样本的分类准确性也较高,并验证了本方法的有效性。 In order to make identification from the speech signal, based on analysis of the conventional identical algorithm, it proposes an advanced method, which uses Mel Frequency Ceptral Coefficients (MFCC) as feature parameters. That is the method of probabilistic neural Network (PNN). The simulation shows that, the classification accuracy rate of PNN to the training samples is very high, and the classification accuracy rate of PNN to the testing samples is high either, the real data testified the effectiveness of this proposed algorithm.
作者 房晔 周亚滨
出处 《电子测量技术》 2008年第8期130-132,共3页 Electronic Measurement Technology
关键词 说话人识别 MEL频率倒谱系数 特征提取 概率神经网络 speaker Identification MFCC feature extraction probilistic neural network
  • 相关文献

参考文献5

  • 1REYNOLDS D A. An overview of automatic speaker recognition technology [A]. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing [ C]: IEEE Press, 2002, 4: 4072-4075.
  • 2他得安,王威琪,汪源源,余建国.基于自回归倒谱法估计骨小梁间距[J].仪器仪表学报,2007,28(1):17-22. 被引量:8
  • 3蔡连红 黄德智 蔡锐.现代语音技术基础与应用[M].北京:清华大学出版社,2003,11..
  • 4SPECHT D F. Probabilistic neural network and general regression neural network [ M]. McGraw- Hill, 1996.
  • 5HAN J, KANMBER M. Data Mining: Concepts and Tech-niques [ M]. San Francisco: Academic Press, 2001.

二级参考文献17

  • 1他得安,余建国,汪源源,王威琪.诊断骨质疏松症的超声参量[J].中华超声影像学杂志,2003,12(5):48-50. 被引量:18
  • 2他得安,王威琪,余建国.松质骨中两种纵波的传播特性分析[J].中国生物医学工程学报,2005,24(1):17-20. 被引量:4
  • 3LANGTON CM,NJEH CF,HODGSKINSON R,et al.Prediction of mechanical properties of the human calcaneus by broadband ultrasonic attenuation[J].Bone,1996,18(6):495-503.
  • 4LITNIEWSKI J,NOWICKI A,SAWICKI A.Detection of bone disease with ultrasound-comparison with bone densitometry.Ultrasonics,2000,38 (1/8):693-697.
  • 5TREBACZ H,NATALI A.Ultrasound velocity and attenuation in cancellous bone samples from lumbar vertebra and calcaneus[J].Osteo Int,1999,9:99-105.
  • 6NICHOLSON PHF,MULLER R,LOWET G,et al.Do quantitative ultrasound measurements reflect structure independently of density in human vertebral cancellous bone[J] Bone,1998,23:425-431.
  • 7PADILLA F,LAUGIER P.Recent developments in trabecular bone characterization using ultrasound[J].Current Osteoporosis Reports,2005,3 (2):64-69.
  • 8CHAFFA? S,PEYRIN F,NUZZO S,et al.Ultrasonic characterization of human cancellous bone using transmission and backscatter measurements:relationships to density and microstructure[J].Bone,2002,30(1):229-237.
  • 9WEAR KA,ARMSTRONG Ⅲ DW.Relationships among calcaneal backscatter,attenuation,sound speed,hip bone mineral density,and age in normal adult women[J].J Acoust Soc Am,2001,110(1):573-578.
  • 10WEAR KA.Frequency dependence of ultrasonic backscatter from human trabecular bone:theory and experiment[J].J Acoust Soc Am,1999,106:3659-3664.

共引文献9

同被引文献24

  • 1毛峡,丁玉宽,牟田一弥.图像的情感特征分析及其和谐感评价[J].电子学报,2001,29(z1):1923-1927. 被引量:26
  • 2王伟凝,余英林,张剑超.基于线条方向直方图的图像情感语义分类[J].计算机工程,2005,31(11):7-9. 被引量:12
  • 3黄崑,赖茂生.以用户情感为线索的图像检索研究[J].情报科学,2006,24(9):1395-1399. 被引量:7
  • 4Takio Kurita,Toshikazu Kato.Leaming of personal visual impression for image database systerns [A ]. In Proceedings of the Second Document Analysis and Science City,1993,20-22. International Conference on Recognition. 547-552, Tsukuba.
  • 5Takashi Hayashi,Masafurni Hagiwam.An image retrieval system to estimate impression words from images using a neural network[J].1997-IEEE International Conference on Systems, Man, and Cybemetics Computational Cybemetics and Simulation,IFEE,New York, NY,1997(1): 150-155.
  • 6Bianchi-Berthouze.Kansei-mining:Identifying Visual Impressions as Pattems in Images [A].Proceedings-Joint 9th IFSA World Congress and 20th NAFIPS International Conference.IEEE,Piscataway,NJ,2001,183-2188.
  • 7WANG L B, MINAMI K. Speaker recognition by combining MFCC and phase information in noisy conditions[ J]. IEEE Transactions on Information and Systems, 2010, E93D (9) :2397-2406.
  • 8MANIKANDAN J, VENKATARAMANI B. Design of a real time automatic speech recognition system using mod- ified one against all SVM classifier[ J]. Microprocessors and Mierosystems ,2011,35 ( 6 ) :568-578.
  • 9KINNUNEN T, SIDOROFF I. Comparison of clustering methods : A case study of text-independent speaker model- ing[ J ]. Pattern Recognition Letters, 2011,32 ( 13 ) : 1604-1617.
  • 10LOURADOUR J ,DAOUDI K. Feature space mahalanobis se- quence kernels :Application to SVM speaker verification [ J ]. IEEE Transactions on Audio Speech and Language Process- ing ,2007,15 ( 8 ) :2465-2475.

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部