摘要
提出了分形油藏中有限导流垂直裂缝井的非牛顿流的数学模型,用影响椭圆和平均值的方法求其近似解,分析计算了改变分维参数、幂律指数、弹性储量比、窜流系数、无量纲导流参数时的压力变化规律,其流态可分为4个阶段:开始时的裂缝内线性流;早期的双线性流;中期的质量交换压力平缓过渡阶段;晚期的平均双重介质径向流阶段。另外,得到了单重分形油藏中非牛顿幂律流的点源函数和有限导流垂直裂缝井的等流量解。
A mathematic model of non Newtonian fluid flow in a fractal oil reservoir with finite conductivity vertical fracture well is proposed and its approximate solution is acquired by the influence ellipse and mean value method.The pressure changing rule is analyzed and calculated while the fractional dimension parameter ( δ ),power law exponent ( n ),elastic reserve ratio ( ω ),interporosity flow coefficient ( λ ) and non dimensional conductivity parameter ( F ) are altered. Its flow state may be divided into 4 stages:linear flow within fractures at the beginning;bilinear flow at early time;mass exchange and pressure gentle transition period at middle time and average dual porosity media radial flow period at later time.In addition,the point source function of non Newtonian exponential flow in single fractal reservoir and the uniform flux solution of the finite conductivity vertical fracture well are obtained.
出处
《天然气工业》
EI
CAS
CSCD
北大核心
1997年第5期27-30,共4页
Natural Gas Industry
关键词
分形油藏
裂缝井
非牛顿流体
渗流
数学模型
Oil and gas reservoir,Near wellbore area,Vertical fracture,Fracture conductivity,Well test interpretation,Percolation mechanics.